Skip to main content

In Vivo Detection of Double-Stranded RNA by dRBFC Assay

  • Protocol
  • First Online:
Plant Virology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2400))

Abstract

Double-stranded RNA (dsRNA) is the genomic material or replicate intermediate of RNA viruses, and is also a crucial signal molecule to trigger innate immune response and RNA silencing in eukaryotic organisms. Studying the subcellular localization and dynamic of dsRNA provides significant information for understanding RNA virus replication, host responses to virus infection, and viral diagnosis. Several antibody-dependent or -independent methods have been developed to in vivo or in vitro visualize dsRNA in cells. Here, we provide a step-by-step protocol for efficiently visualizing the distribution and dynamics of dsRNA in living plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jacobs BL, Langland JO (1996) When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219:339–349

    Article  CAS  Google Scholar 

  2. Dewitte-Orr SJ, Mossman KL (2011) The antiviral effects of extracellular dsRNA. In: Mossman KL (ed) Viruses and interferon: current research. Academic Press, Caister, pp 1–18

    Google Scholar 

  3. Maida Y, Masutomi K (2011) RNA-dependent RNA polymerases in RNA silencing. Biol Chem 392:299–304

    Article  CAS  Google Scholar 

  4. Qi X, Bao FS, Xie Z (2009) Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS One 4:e4971

    Article  Google Scholar 

  5. Sijen T, Fleenor J, Simmer F et al (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476

    Article  CAS  Google Scholar 

  6. Rosok O, Sioud M (2004) Systematic identification of sense-antisense transcripts in mammalian cells. Nat Biotechnol 22:104–108

    Article  CAS  Google Scholar 

  7. Vance V, Vaucheret H (2001) RNA silencing in plants—defense and counterdefense. Science 292:2277–2280

    Article  CAS  Google Scholar 

  8. Peisley A, Hur S (2013) Multi-level regulation of cellular recognition of viral dsRNA. Cell Mol Life Sci 70:1949–1963

    Article  CAS  Google Scholar 

  9. Niehl A, Wyrsch I, Boller T et al (2016) Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. New Phytol 211:1008–1019

    Article  CAS  Google Scholar 

  10. Niehl A, Heinlein M (2009) Perception of double-stranded RNA in plant antiviral immunity. Mol Plant Pathol 20:1203–1210

    Article  Google Scholar 

  11. Ishibashi K, Saruta M, Shimizu T et al (2019) Soybean antiviral immunity conferred by dsRNase targets the viral replication complex. Nat Commun 10:4033

    Article  Google Scholar 

  12. Cuellar WJ, Kreuze JF, Rajamäki M-L et al (2009) Elimination of antiviral defense by viral RNase III. Proc Natl Acad Sci U S A 106:10354–10358

    Article  Google Scholar 

  13. Triantafilou K, Vakakis E, Kar S et al (2012) Visualisation of direct interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA viruses. J Cell Sci 125:4761–4769

    CAS  PubMed  Google Scholar 

  14. Son K-N, Liang Z, Lipton HL (2015) Double-strand RNA is detected by immunofluorescence analysis in RNA and DNA virus infections including those by negative-strand RNA viruses. J Virol 89:9383–8392

    Article  CAS  Google Scholar 

  15. Weber F, Wagner V, Rasmussen SB et al (2006) Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80:5059–5064

    Article  CAS  Google Scholar 

  16. Stollar BD, Stollar V (1970) Immunofluorescent demonstration of double-stranded RNA in the cytoplasm of sindbis virus-infected cells. Virology 42:276–280

    Article  CAS  Google Scholar 

  17. Schonborn J, Oberstraβ J, Breyel E et al (1991) Monoclonal antibodies to double-stranded RNA as probes of RNA structure in crude nucleic acid extracts. Nucleic Acids Res 19:2993–3000

    Article  CAS  Google Scholar 

  18. Bolten R, Egger D, Gosert R et al (1998) Intracellular localization of poliovirus plus- and minus-strand RNA visualized by strand-specific fluorescent in situ hybridization. J Virol 72:8578–8585

    Article  CAS  Google Scholar 

  19. Monsion B, Incarbone M, Hleibieh K, Poignavent V, Ghannam A, Dunoyer P, Daeffler L, Tilsner J, Ritzenthaler C (2018) Efficient detection of long dsRNA in vitro and in vivo using the dsRNA binding domain from FHV B2 protein. Front Plant Sci 9:70

    Article  Google Scholar 

  20. Cheng X, Deng P, Cui H et al (2015) Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation. Virology 485:439–451

    Article  CAS  Google Scholar 

  21. Cotton S, Grangeon R, Thivierge K et al (2009) Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. J Virol 83:10460–10471

    Article  CAS  Google Scholar 

  22. Lu Q, Tang X, Tian G et al (2010) Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant J 61:259–270

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31671998) and the Natural Science Foundation of Heilongjiang Province (ZD2018002) to XC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cheng, X., Luan, Y., Wang, A. (2022). In Vivo Detection of Double-Stranded RNA by dRBFC Assay. In: Wang, A., Li, Y. (eds) Plant Virology . Methods in Molecular Biology, vol 2400. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1835-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1835-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1834-9

  • Online ISBN: 978-1-0716-1835-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics