Skip to main content

Measuring Mechanical and Adhesive Properties of Single Cells Using an Atomic Force Microscope

  • Protocol
  • First Online:
Metastasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2294))

  • 1475 Accesses

Abstract

Atomic force microscopy allows the determination of both mechanical and adhesive properties of living single cells and generation of high-resolution surface images. Here, we describe a method to determine the Young’s modulus of a cell and adhesion between a coated cantilever and a cell, as well as an overview of the analysis of the data obtained. Additionally, we point out typical and important pitfalls during the measurement and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Binnig G, Quate CF, Gerber C (1986) Atomic Force Microscope. Phys Rev Lett 56(9):930–933

    Article  CAS  Google Scholar 

  2. Cappella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci Rep 34(1–3):1–104

    Article  CAS  Google Scholar 

  3. De Pascalis C, Etienne-Manneville S (2017) Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell 28(14):1833–1846

    Article  Google Scholar 

  4. Guck J, Schinkinger S, Lincoln B et al (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5):3689–3698

    Article  CAS  Google Scholar 

  5. Cross SE, Jin Y-S, Rao J et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783

    Article  CAS  Google Scholar 

  6. Iyer S, Gaikwad RM, Subba-Rao V et al (2009) AFM detects differences in the surface brush of normal and cancerous cervical cells. Nat Nanotechnol 4(6):389–393

    Article  CAS  Google Scholar 

  7. Lekka M, Gil D, Pogoda K et al (2012) Cancer cell detection in tissue sections using AFM. Arch Biochem Biophys 518(2):151–156

    Article  CAS  Google Scholar 

  8. Lekka M, Pogoda K, Gostek J et al (2012) Cancer cell recognition - mechanical phenotype. Micron 43(12):1259–1266

    Article  Google Scholar 

  9. Li QS, Lee GYH, Ong CN et al (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374(4):609–613

    Article  CAS  Google Scholar 

  10. Ochalek T, Nordt FJ, Tullberg K et al (1988) Correlation between cell deformability and metastatic potential in B16-F1 melanoma cell variants. Cancer Res 48(18):5124–5128

    CAS  PubMed  Google Scholar 

  11. Remmerbach TW, Wottawah F, Dietrich J et al (2009) Oral cancer diagnosis by mechanical phenotyping. Cancer Res 69(5):1728–1732

    Article  CAS  Google Scholar 

  12. Darling EM, Zauscher S, Block JA et al (2007) A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys J 92(5):1784–1791

    Article  CAS  Google Scholar 

  13. Swaminathan V, Mythreye K, Tim O’Brien E et al (2011) Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 71(15):5075–5080

    Article  CAS  Google Scholar 

  14. Xu W, Mezencev R, Kim B et al (2012) Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One 7(10):e46609

    Article  CAS  Google Scholar 

  15. Watanabe T, Kuramochi H, Takahashi A et al (2012) Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (2)-epigallocatechin gallate-treated cells. J Cancer Res Clin Oncol 138(5):859–866

    Article  CAS  Google Scholar 

  16. Ohler B (2007) Practical advice on the determination of cantilever spring constants. pp 1–12

    Google Scholar 

  17. Sokolov I, Iyer S, Subba-Rao V et al (2007) Detection of surface brush on biological cells in vitro with atomic force microscopy. Appl Phys Lett 91(2):2–4

    Article  Google Scholar 

  18. Guz N, Dokukin M, Kalaparthi V et al (2014) If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys J 107(3):564–575

    Article  CAS  Google Scholar 

  19. Smeets B, Cuvelier M, Pešek J et al (2019) The effect of cortical elasticity and active tension on cell adhesion mechanics. Biophys J 116(5):930–937

    Article  CAS  Google Scholar 

  20. Ding Y, Wang J, Xu GK et al (2018) Are elastic moduli of biological cells depth dependent or not? Another explanation using a contact mechanics model with surface tension. Soft Matter 14(36):7534–7541

    Article  CAS  Google Scholar 

  21. Cartagena-Rivera AX, Logue JS, Waterman CM et al (2016) Actomyosin cortical mechanical properties in nonadherent cells determined by atomic force microscopy. Biophys J 110(11):2528–2539

    Article  CAS  Google Scholar 

  22. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57

    Article  Google Scholar 

  23. Ding Y, Xu GK, Wang GF (2017) On the determination of elastic moduli of cells by AFM based indentation. Sci Rep 7:1–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Dehghani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hohmann, T., Dehghani, F. (2021). Measuring Mechanical and Adhesive Properties of Single Cells Using an Atomic Force Microscope. In: Stein, U.S. (eds) Metastasis. Methods in Molecular Biology, vol 2294. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1350-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1350-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1349-8

  • Online ISBN: 978-1-0716-1350-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics