Skip to main content

Behavioral Tests for Assessing Pain and Nociception: Relationship with the Brain Reward System

  • Protocol
  • First Online:
The Brain Reward System

Part of the book series: Neuromethods ((NM,volume 165))

  • 1104 Accesses

Abstract

Pain is an unpleasant sensation accompanied by an emotional experience leading to real or potential tissue damage. At the neurobiological level, the sensation of pain is mediated through the activation of nociceptors, which are biological sensory receptors that relay pain-related information to higher brain centers. Conversely, a reward can be defined as an event that produces a pleasant or positive affective experience. Although pain and reward are totally opposing processes, evidence suggests that the neural circuit of pain somewhat overlaps the neural circuit of reward. In this chapter, the relationship between the neural circuit of pain and the reward system, in particular, the mesolimbic dopaminergic system, is discussed. In addition, this chapter describes standard behavioral techniques used to study pain-related behaviors in experimental animals, including techniques that assess primary and secondary hyperalgesia in response to innocuous and noxious heat and mechanical stimulation. The full apparatus is described in detail along with the proper procedure to be followed by the experimenter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Porreca F, Navratilova E (2017) Reward, motivation, and emotion of pain and its relief. Pain 158(Suppl 1):S43–S49. https://doi.org/10.1097/j.pain.0000000000000798

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fields HL (1999) Pain: an unpleasant topic. Pain Suppl 6:S61–S69. https://doi.org/10.1016/s0304-3959(99)00139-6

    Article  Google Scholar 

  3. Dallenbach KM (1939) Pain: history and present status. Am J Psychol 52:331–347

    Article  Google Scholar 

  4. Mingote S et al (2017) Dopamine neuron dependent behaviors mediated by glutamate cotransmission. Elife 6:e27566. https://doi.org/10.7554/eLife.27566

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berger A, Dukes EM, Oster G (2004) Clinical characteristics and economic costs of patients with painful neuropathic disorders. J Pain 5(3):143–149. https://doi.org/10.1016/j.jpain.2003.12.004

    Article  PubMed  Google Scholar 

  6. Denton DA et al (2009) The role of primordial emotions in the evolutionary origin of consciousness. Conscious Cogn 18(2):500–514. https://doi.org/10.1016/j.concog.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  7. Craig AD (2003) A new view of pain as a homeostatic emotion. Trends Neurosci 26(6):303–307. https://doi.org/10.1016/s0166-2236(03)00123-1

    Article  CAS  PubMed  Google Scholar 

  8. Yam MF et al (2018) General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int J Mol Sci 19(8):2164. https://doi.org/10.3390/ijms19082164

    Article  CAS  PubMed Central  Google Scholar 

  9. Linley JE et al (2010) Understanding inflammatory pain: ion channels contributing to acute and chronic nociception. Pflugers Arch 459(5):657–669. https://doi.org/10.1007/s00424-010-0784-6

    Article  CAS  PubMed  Google Scholar 

  10. Navratilova E, Porreca F (2014) Reward and motivation in pain and pain relief. Nat Neurosci 17(10):1304–1312. https://doi.org/10.1038/nn.3811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Navratilova E et al (2012) Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc Natl Acad Sci U S A 109(50):20709–20713. https://doi.org/10.1073/pnas.1214605109

    Article  PubMed  PubMed Central  Google Scholar 

  12. Watanabe M et al (2018) Activation of ventral tegmental area dopaminergic neurons reverses pathological allodynia resulting from nerve injury or bone cancer. Mol Pain 14:1744806918756406. https://doi.org/10.1177/1744806918756406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Becker S, Gandhi W, Schweinhardt P (2012) Cerebral interactions of pain and reward and their relevance for chronic pain. Neurosci Lett 520(2):182–187. https://doi.org/10.1016/j.neulet.2012.03.013

    Article  CAS  PubMed  Google Scholar 

  14. Leknes S, Tracey I (2008) A common neurobiology for pain and pleasure. Nat Rev Neurosci 9(4):314–320. https://doi.org/10.1038/nrn2333

    Article  CAS  PubMed  Google Scholar 

  15. Garza-Villarreal EA et al (2014) Music reduces pain and increases functional mobility in fibromyalgia. Front Psychol 5:90. https://doi.org/10.3389/fpsyg.2014.00090

    Article  PubMed  PubMed Central  Google Scholar 

  16. Geha P et al (2014) Decreased food pleasure and disrupted satiety signals in chronic low back pain. Pain 155(4):712–722. https://doi.org/10.1016/j.pain.2013.12.027

    Article  PubMed  Google Scholar 

  17. Garland EL et al (2019) Anhedonia in chronic pain and prescription opioid misuse. Psychol Med 9:1–12. https://doi.org/10.1017/S0033291719002010

    Article  Google Scholar 

  18. Melzack R, Casey KL (1968) Sensory, motivational, and central control determinants of pain: a new conceptual model in pain. In: Kenshalo DRG (ed) The skin senses: Proceedings. Charles C. Thomas, Springfield, IL, p 63

    Google Scholar 

  19. Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55(3):377–391. https://doi.org/10.1016/j.neuron.2007.07.012

    Article  CAS  PubMed  Google Scholar 

  20. Roy M et al (2014) Representation of aversive prediction errors in the human periaqueductal gray. Nat Neurosci 17(11):1607–1612. https://doi.org/10.1038/nn.3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Scott DJ et al (2008) Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch Gen Psychiatry 65(2):220–231. https://doi.org/10.1001/archgenpsychiatry.2007.34

    Article  PubMed  Google Scholar 

  22. Wager TD, Scott DJ, Zubieta JK (2007) Placebo effects on human mu-opioid activity during pain. Proc Natl Acad Sci U S A 104(26):11056–11061. https://doi.org/10.1073/pnas.0702413104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vogt BA (2005) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6(7):533–544. https://doi.org/10.1038/nrn1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rainville P et al (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277(5328):968–971. https://doi.org/10.1126/science.277.5328.968

    Article  CAS  PubMed  Google Scholar 

  25. Johansen JP, Fields HL (2004) Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat Neurosci 7(4):398–403. https://doi.org/10.1038/nn1207

    Article  CAS  PubMed  Google Scholar 

  26. Baumgartner U et al (2006) High opiate receptor binding potential in the human lateral pain system. NeuroImage 30(3):692–699. https://doi.org/10.1016/j.neuroimage.2005.10.033

    Article  PubMed  Google Scholar 

  27. Vogt LJ et al (2001) Colocalization of mu-opioid receptors and activated G-proteins in rat cingulate cortex. J Pharmacol Exp Ther 299(3):840–848

    CAS  PubMed  Google Scholar 

  28. Watanabe M, Narita M (2018) Brain reward circuit and pain. In: Shyu BC, Tominaga M (eds) Advances in pain research: mechanisms and modulation of chronic pain, Advances in Experimental Medicine and Biology, vol 1099. Springer, Singapore

    Google Scholar 

  29. D'Ardenne K et al (2008) BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 319(5867):1264–1267. https://doi.org/10.1126/science.1150605

    Article  CAS  PubMed  Google Scholar 

  30. Adcock RA et al (2006) Reward-motivated learning: mesolimbic activation precedes memory formation. Neuron 50(3):507–517. https://doi.org/10.1016/j.neuron.2006.03.036

    Article  CAS  PubMed  Google Scholar 

  31. Berridge KC (2007) The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology 191(3):391–431. https://doi.org/10.1007/s00213-006-0578-x

    Article  CAS  PubMed  Google Scholar 

  32. Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68(5):815–834. https://doi.org/10.1016/j.neuron.2010.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30(5):203–210. https://doi.org/10.1016/j.tins.2007.03.007

    Article  CAS  PubMed  Google Scholar 

  34. Cowan WM, Kandel E (2000) A brief history of synapses and synaptic transmission. Biology

    Google Scholar 

  35. Roy M, Peretz I, Rainville P (2008) Emotional valence contributes to music-induced analgesia. Pain 134(1–2):140–147. https://doi.org/10.1016/j.pain.2007.04.003

    Article  PubMed  Google Scholar 

  36. Blanchet PJ, Brefel-Courbon C (2018) Chronic pain and pain processing in Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 87(Pt B):200–206. https://doi.org/10.1016/j.pnpbp.2017.10.010

    Article  PubMed  Google Scholar 

  37. Mantyh P (2013) Bone cancer pain: causes, consequences, and therapeutic opportunities. Pain 154(Suppl 1):S54–S62. https://doi.org/10.1016/j.pain.2013.07.044

    Article  PubMed  Google Scholar 

  38. Stubbs B et al (2015) Decreased pain sensitivity among people with schizophrenia: a meta-analysis of experimental pain induction studies. Pain 156(11):2121–2131. https://doi.org/10.1097/j.pain.0000000000000304

    Article  PubMed  Google Scholar 

  39. Trivedi MH (2004) The link between depression and physical symptoms. Prim Care Companion J Clin Psychiatry 6(Suppl 1):12–16

    PubMed  PubMed Central  Google Scholar 

  40. Huyser BA, Parker JC (1999) Negative affect and pain in arthritis. Rheum Dis Clin N Am 25(1):105–121., vi. https://doi.org/10.1016/s0889-857x(05)70057-0

    Article  CAS  Google Scholar 

  41. Borsook D et al (2016) Reward deficiency and anti-reward in pain chronification. Neurosci Biobehav Rev 68:282–297. https://doi.org/10.1016/j.neubiorev.2016.05.033

    Article  CAS  PubMed  Google Scholar 

  42. Reboucas EC et al (2005) Effect of the blockade of mu1-opioid and 5HT2A-serotonergic/alpha1-noradrenergic receptors on sweet-substance-induced analgesia. Psychopharmacology 179(2):349–355. https://doi.org/10.1007/s00213-004-2045-x

    Article  CAS  PubMed  Google Scholar 

  43. Wood PB et al (2007) Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J Pain 8(1):51–58. https://doi.org/10.1016/j.jpain.2006.05.014

    Article  CAS  PubMed  Google Scholar 

  44. Wood PB (2008) Role of central dopamine in pain and analgesia. Expert Rev Neurother 8(5):781–797. https://doi.org/10.1586/14737175.8.5.781

    Article  CAS  PubMed  Google Scholar 

  45. Treede RD et al (1992) Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol 38(4):397–421. https://doi.org/10.1016/0301-0082(92)90027-c

    Article  CAS  PubMed  Google Scholar 

  46. Merskey H (1982) Pain terms: A supplementary note. Pain 14(3):205–206

    Article  Google Scholar 

  47. Treede RD (2006) Chapter 1 Pain and hyperalgesia: definitions and theories. Handb Clin Neurol 81:3–10. https://doi.org/10.1016/S0072-9752(06)80005-9

    Article  PubMed  Google Scholar 

  48. Sumikura H, Miyazawa A, Yucel A, Anderson O, Arendt-Nielsen L (2005) Secondary heat hyperalgesia detected by radiant heat stimuli in humans: Evaluation of stimulus intensity and duration. Somatosens Mot Res 22(3):233–237. https://doi.org/10.1080/08990220500262778

    Article  PubMed  Google Scholar 

  49. Lawand NB, Willis WD, Westlund KN (1997) Excitatory amino acid receptor involvement in peripheral nociceptive transmission in rats. Eur J Pharmacol 324(2–3):169–177. https://doi.org/10.1016/s0014-2999(97)00072-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nada B. Lawand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fakhoury, M., Ahmad, R.H.M.A., Al-Chaer, E.D., Lawand, N.B. (2021). Behavioral Tests for Assessing Pain and Nociception: Relationship with the Brain Reward System. In: Fakhoury, M. (eds) The Brain Reward System. Neuromethods, vol 165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1146-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1146-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1145-6

  • Online ISBN: 978-1-0716-1146-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics