Skip to main content

Electro-optic and Magneto-optic Nonintrusive Field Sensing Technologies

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Radio and Optical Networks Convergence
  • 38 Accesses

Abstract

Correct visualization of electromagnetic waves requires a sensor capable of detecting the actual EM field non-intrusively. This chapter introduces electric and magnetic field sensing technologies that utilize nonintrusive E-field and B-field probes based on the Pockels electro-optic (EO) effect and the magneto-optic (MO) Faraday effect. In contrast to conventional field sensors, such as antennas and diode sensors, which contain metallic components, these field probes are made of entirely dielectric materials. Hence, they negligibly perturb the electric and magnetic fields that they measure. The detected electric and magnetic fields are “true” and nearly distortion-free, and the waveform of the field is exact even in a complex electromagnetic environment, where conventional field sensors fail to produce reliable and reproducible results. The EO and MO field sensors have an extreme frequency bandwidth. This extensive bandwidth enables the EO and MO probes to detect all Fourier frequency components for a complex waveform. Hence, in principle, the sensors can measure the exact waveform for the EO probe, from ELF up to terahertz frequency. They are compact and also have an exceptional dynamic range. In addition, the sensors cause negligible reflection and perturbation of the electromagnetic field, enabling them to detect the near-field and far-field without disturbing the signal source – the capability a conventional probe cannot provide. Also, they are vector sensors capable of detecting the direction of the E- and B-fields. So, the field probes are suitable for various applications, which are otherwise impossible or very difficult to perform with conventional field probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. F.M. de Aguiar, Phys. Lett. A 375, 265 (2011)

    Article  ADS  Google Scholar 

  2. L. J. Chu. Physical limitations of omni-directional antennas. J. Appl. Phys., vol. 19, December 1948. Pages 1163–1175

    Google Scholar 

  3. R.F. Harrington, Time-Harmonic Electromagnetic Fields. Electrical and Electronical Engineering (McGraw-Hill, New York, 1961)

    Google Scholar 

  4. J. Rappaz. Analyse numerique. Notes de cours: Leçons 1 à 10, École Polytechnique Fédérale de Lausanne, 1994, Pages 64–66

    Google Scholar 

  5. Schultz, S. M., R. Selfridge, S. Chadderdon, D. Perry, and N. Stan. “Nonintrusive Electric Field Sensing.” Proc. SPIE 9062, Smart Sensor Phenomena, Technology, Networks, and Systems Integration 2014, 90620H, 10 April 2014

    Google Scholar 

  6. R. Feynman, QED: The Strange Theory of Light and Matter (Princeton University Press, Guildford, 1985)

    Google Scholar 

  7. Warzecha, A., M. Bernier, G. Gaborit, L. Duvillaret, J.-L. Lasserre. “Electro-optic sensors dedicated to non-invasive electric field characterization.” Proc. SPIE 7389, Optical Measurement Systems for Industrial Inspection VI, no. 738922, 17 June 2009

    Google Scholar 

  8. A. Garzarella, S.B. Quadri, D.H. Wu, Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications. Appl. Phys. Lett. 94(221113) (2009)

    Google Scholar 

  9. A. Garzarella, S.B. Qadri, D.H. Wu, Effects of crystal-induced optical incoherence in electro-optic field sensors. J. Electron. Mater. 39(6) (2010)

    Google Scholar 

  10. A. Garzarella, D.H. Wu, Optimal crystal geometry and orientation in electric field sensing using electro-optic sensors. Opt. Lett. 37(11), 2124–2126 (2012)

    Article  ADS  Google Scholar 

  11. A. Garzarella, S.B. Qadri, T.J. Wieting, D.H. Wu, Spatial and temporal sensitivity variations in photorefractive electro-optic field sensors. App. Phys. Lett. 88(141106) (2006)

    Google Scholar 

  12. A. Garzarella, S.B. Qadri, T.J. Wieting, D.H. Wu, The effects of Photorefraction on Electrooptic field sensors. J. Appl. Phys. 97(113108) (2005)

    Google Scholar 

  13. S.B. Qadri, J.A. Bellotti, A. Garzarella, T. Wieting, D.H. Wu, Phase transition in Sr0.75Ba0.25NbO3 near the curie temperature. Appl. Phys. Lett. 89(222911) (2006)

    Google Scholar 

  14. S.B. Qadri, J.A. Bellotti, A. Garzarella, T. Wieting, D.H. Wu, Anisotropic thermal expansion of strontium barium Niobate. App. Phys. Lett. 86(251914) (2005)

    Google Scholar 

  15. V. J. Fratello, I. M. Steven, J. Licht, and R. R. Abbott, MRS Proceedings 834, J6.2 (2004)

    Google Scholar 

  16. R. Valenzuela, Magnetic Ceramics (Cambridge University Press, 1994)

    Book  Google Scholar 

  17. D.C. Jiles, Dynamics of domain magnetization and the Barkhausen effect. Czech. J. Phys. 50, 893–924 (2000); L. D. Landau and E. M. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Ukr. J. Phys. 53, 14–22 (2008), V. 53 Reprinted from Phys. Zeitsch. der Sow. 8, 153–169 (1935)]

    Google Scholar 

  18. A. Garzarella, M.A. Shinn, Dong Ho Wu, Responsivity optimization in magneto-optic sensors based on ferromagnetic materials. Appl. Opt. 64(26), 9704 (2015)

    Google Scholar 

  19. A. Garzarella, M.A. Shinn, D.H. Wu, Effects of magnetically induced optical incoherence in arrayed faraday rotator crystals. Appl. Phys. Lett. 106, 221102 (2015). https://doi.org/10.1063/1.4922046

    Article  ADS  Google Scholar 

  20. A. Garzarella, S.B. Qadri, Dong Ho Wu, Effects of crystal-induced optical incoherence in electro-optic field sensors. J. Electron. Mater. 39(6) (2010). https://doi.org/10.1007/s11664-010-1103-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Ho Wu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wu, D.H. (2023). Electro-optic and Magneto-optic Nonintrusive Field Sensing Technologies. In: Kawanishi, T. (eds) Handbook of Radio and Optical Networks Convergence. Springer, Singapore. https://doi.org/10.1007/978-981-33-4999-5_32-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4999-5_32-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4999-5

  • Online ISBN: 978-981-33-4999-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Electro-optic and Magneto-optic Nonintrusive Field Sensing Technologies
    Published:
    29 September 2023

    DOI: https://doi.org/10.1007/978-981-33-4999-5_32-2

  2. Original

    EO and MO Sensing (Tentative)
    Published:
    14 July 2023

    DOI: https://doi.org/10.1007/978-981-33-4999-5_32-1