Skip to main content

Antimicrobial reistance in Animal sector

  • Living reference work entry
  • First Online:
Handbook on Antimicrobial Resistance
  • 41 Accesses

Abstract

The antimicrobial resistance (AMR) phenomenon in bacteria is in existence well before the discovery of present-day antibiotics, but the rapidity of its development in bacteria is a cause of great concern as it renders the antibiotics ineffective for therapeutic use in human health and animal health. Antimicrobial use (AMU) is one of the main drivers for AMR in bacteria. The global consumption of antimicrobials in the animal sector is phenomenally increasing at great proportions, especially in low- and middle-income countries. The use of antibiotics as growth promoters in animal feeds for improved animal productivity is a cause of great concern. The AMR is transferrable among bacterial species across the human, animal, and environmental sectors. The AMR in animals has not received much-required attention compared to the human counterparts. As global AMR surveillance network for animals is not available, point prevalence surveys are employed to map AMR in animals. Considerable geographic variation in antibiotic resistance levels is observed in foodborne pathogens, viz., Escherichia coli, Campylobacter species, non-typhoidal Salmonella serotypes, and Staphylococcus aureus. Certain classes of antibiotics are listed as critically important in both human medicine and veterinary medicine. Therefore, the rational use of antimicrobials is the need of the hour as antibiotics are indispensable tools in animal health too. In animal sector, the increased AMR is responsible for the financial losses due to higher mortality of animals, reduced productivity, and early culling of breeding and production animals, effecting the livelihoods of livestock and poultry farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aarestrup, F. M., Wegener, H. C., & Collignon, P. (2008). Resistance in bacteria of the food chain: Epidemiology and control strategies. Expert Review of Anti-Infective Therapy, 6(5), 733–750.

    Article  PubMed  Google Scholar 

  • Abbas, G., Khan, I., Mohsin, M., Sajjad-ur-Rahman, Y. T., & Ali, S. (2019). High rates of CTX-M group-1 extended-spectrum β-lactamases producing Escherichia coli from pets and their owners in Faisalabad. Pakistan, Infection and Drug Resistance, 12, 571–578.

    Google Scholar 

  • Allen, H. K., & Stanton, T. B. (2014). Altered egos: Antibiotics effects on food animal microbiomes. Annual Review of Microbiology, 68, 297–315.

    Article  CAS  PubMed  Google Scholar 

  • Arias, C. A., & Murray, B. E. (2008). Emergence and management of drug-resistant enterococcal infections. Expert Review of Anti-Infective Therapy, 6, 637–655.

    Article  CAS  PubMed  Google Scholar 

  • Asadollahi, P., Farahani, N. N., Mirzali, M., Khoramrooz, S. S., Belkum, A. V., Asadollahi, K., Dadashi, M., & Darban-Sarokhalil, D. (2018). Distribution of the most prevalent spa types among clinical isolates of methicillin-resistant and susceptible Staphylococcus aureus around the world. Frontiers in Microbiology, 9, 163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates, J., Jordens, Z., & Selkon, J. B. (1993). Evidence for an animal origin of vancomycin-resistant enterococci. Lancet, 342, 490–491.

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson, B., & Greko, C. (2014). Antibiotic resistance-consequences for animal health, welfare, and food production. Upsala Journal of Medical Sciences, 119, 96–102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya, D., Banerjee, J., Bandyopadhyay, S., Mondal, B., Nanda, P. K., Samantha, I., Mahanti, A., Das, A. K., Das, G., Dandapat, P., & Bandyopadhyay, S. (2016). First report on vancomycin resistant Staphylococcus aureus in bovine and caprine milk. Microbial Drug Resistance, 22(8), 675–681.

    Article  Google Scholar 

  • Broom, L. J. (2017). The sub-inhibitory theory for antibiotic growth promoters. Poultry Science, 96, 3104–3108.

    Article  CAS  PubMed  Google Scholar 

  • Cerca, N., Martins, S., Sillankorva, S., Jefferson, K. K., Pier, G. B., Oliviera, R., & Azeredo, J. (2005). Effects of growth in the presence of subinhibitory concentrations of dicloxacillin on staphylococcus epidermidis and staphylococcus haemolyticus biofilms. Applied and Environmental Microbiology, 71, 8677–8682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cromwell, G. L. (2002). Why and how antibiotics are used in swine production. Animal Biotechnology, 13, 7–27.

    Article  PubMed  Google Scholar 

  • Damborg, P., Nielsen, S. S., & Guardabassi, L. (2009). Escherichia coli shedding patterns in humans and dogs: Insights into-within household transmission of phylotypes associated with urinary tract infections. Epidemiology and Infection, 137, 1457–1464.

    Article  CAS  PubMed  Google Scholar 

  • Davis, M., & Walsh, T. R. (2018). A colistin crisis in India. The Lancet, 18(3), 256–257. https://doi.org/10.1016/S1473-3099(18)30072-0

    Article  Google Scholar 

  • Dibner, J. J., & Richards, J. D. (2005). Antibiotic growth promoters in agriculture: History and mode of action. Poultry Science, 84, 634–643.

    Article  CAS  PubMed  Google Scholar 

  • Dolejska, M., Bierošová, B., Kohoutova, L., Literak, I., & Čížek, A. (2009). Antibiotic-resistant salmonella and Escherichia coli isolates with integrons and extended-spectrum beta-lactamases in surface water and sympatric black-headed gulls. Journal of Applied Microbiology, 106, 1941–1950.

    Article  CAS  PubMed  Google Scholar 

  • Drummond, L. J., Smith, D. G. E., & Poxton, I. R. (2003). Effects of sub-MIC concentrations of antibiotics on growth of and toxin production by Clostridium difficile. Journal of Medical Microbiology, 52, 1033–1038.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, H., & Warren, G. H. (1974). Enhanced susceptibility of penicillin resistant staphylococci to phagocytosis after in vitro incubation with low doses of nafcillin (38177). Proceedings of the Society for Experimental Biology and Medicine, 146, 707–711.

    Article  CAS  PubMed  Google Scholar 

  • Gaskins, H. R., Collier, C. T., & Anderson, D. B. (2002). Antibiotics as growth promotants: Mode of action. Animal Biotechnology, 13, 29–42.

    Article  CAS  PubMed  Google Scholar 

  • Ghirardini, A., Grillini, V., & Verlicchi, P. (2020). A review of the occurrence of selected micropollutants and microorganisms in different raw and treated manure–environmental risk due to antibiotics after application to soil. Science of the Total Environment, 707, 136118.

    Article  CAS  PubMed  Google Scholar 

  • Giedraitiene, A., Vitkauskiene, R., Naginiene, R., & Pavilonis, A. (2011). Antibiotic resistance mechanisms of clinically important bacteria. Medicinia, 47, 137–146.

    Google Scholar 

  • Hacker, J., Ott, M., & Hof, H. (1993). Effects of low, sub-inhibitory concentrations of antibiotics on expression of a virulent gene cluster of pathogenic Escherichia coli by using a wild-type gene fusion. International Journal of Antimicrobial Agents, 2, 263–270.

    Article  CAS  PubMed  Google Scholar 

  • Haenni, M., Hocquet, D., Ponsin, C., Cholley, P., Guyeux, C., Madec, J., & Bertrand, X. (2015). Population structure and antimicrobial susceptibility of Pseudomonas aeruginosa from animal infections in France. BMC Veterinary Research, 11(9), 1–5.

    Google Scholar 

  • Haenni, M., Bour, M., Châtre, P., Madec, J.-Y., Plésiat, P., & Jeannot, K. (2017). Resistance of animal strains of Pseudomonas aeruginosa to carbapenems. Frontiers in Microbiology, 8, 1847. https://doi.org/10.3389/fmicb.2017.01847

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammerum, A. M. (2012). Enterococci of animal origin and their significance for public health. Clinical Microbiology and Infection, 18(7), 619–625.

    Article  CAS  PubMed  Google Scholar 

  • Heuer, O. E., Hammerum, A. M., Collignon, P., & Wegener, H. C. (2006). Human health hazard from antimicrobial-resistant enterococci in animals and food. Clinical Infectious Diseases, 43, 911–916.

    Article  PubMed  Google Scholar 

  • Jeannot, K., Bolard, A., & Plesiat, P. (2017). Resistance to polymyxins in gram-negative organisms. International Journal of Antimicrobial Agents, 49(5), 526–535.

    Article  CAS  PubMed  Google Scholar 

  • Jonas, O. B., Irwin, A., Berthe, F. C. J., Le Gall, F. G., & Marquez, P. V. (2017). Drug resistant infections: A threat to our economic future (Vol. 2), Final report (English). HNP/Agriculture Global Antimicrobial Resistance Initiative, World bank Group. https://documents1.worldbank.org/curated/en/323311493396993758/pdf/final-report.pdf

    Google Scholar 

  • Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451, 990–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jukes, T. H., Stokstad, E., Tayloe, R., Cunha, T., Edwards, H., & Meadows, G. (1950). Growth promoting effect of aureomycin on pigs. Archives of Biochemistry, 26, 324–325.

    CAS  Google Scholar 

  • Larsen, J., Schønheyder, H. C., Singh, K. V., Lester, C. H., Olsen, S. S., Porsbo, L. J., Garcia-Migura, L., Jensen, L. B., Bisgaard, M., Murray, B. E., & Hammerum, A. M. (2011). Porcine and human community reservoirs of enterococcus faecalis, Denmark. Emerging Infectious Diseases, 17, 2395–2397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L. F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J.-H., & Shen, J. (2016). Emergence of plasmid mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infectious Diseases, 16(2), 161–168.

    Article  PubMed  Google Scholar 

  • Magnusson, U., Moodley, A., & Obsbjer, K. (2021). Antimicrobial resistance at the livestock-human interface: Implications for veterinary science. Revue Scientifique et Technique Office International des Epizooties, 40(2), 511–521.

    Article  CAS  Google Scholar 

  • Mandakini, R., Roychoudhury, P., Subudhi, P. K., Kylla, H., Samanta, I., Bandyopadyay, S., & Dutta, T. K. (2020). Higher prevalence of multi-drug resistant- extended spectrum ß lactamases producing Escherichia coli in unorganised pig farms compared to organised pig farms in Mizoram, India. Veterinary World, 13(12), 2752–2758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manishimwe, R., Moncada, P. M., Bugarel, M., Scott, H. M., & Loneragan, G. H. (2021). Antibiotic resistance among Escherichia coli and salmonella isolated from dairy cattle feces in Texas. PLoS One, 16(5), e0242390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mistry, H., Sharma, P., Mahato, S., Saravanan, R., Anand Kumar, P., & Bhandari, V. (2016). Prevalence and characterization of Oxacillin susceptible mec A-positive clinical isolates of Staphylococcus aureus causing bovine mastitis in India. PLoS One, 11(9), e0162256.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore, C. E. (2019). Changes in antibiotic resistance in animals. Science, 365(6459), 1251–1252.

    Article  CAS  PubMed  Google Scholar 

  • Moore, P., Evenson, A., Luckey, T., McCoy, E., Elvehjem, C., & Har, E. (1946). Use of sulfasuxidine, streptothricin, and streptomycin in nutritional studies with chick. Journal of Biological Chemistry, 165(2), 437–441.

    Article  CAS  PubMed  Google Scholar 

  • Moubareck, C., Bourgeois, N., Courvalin, P., & Doucet-Populaire, F. (2003). Multiple antibiotic resistance gene transfer from animal to human enterococci in the digestive tract of gnotobiotic mice. Antimicrobial Agents and Chemotherapy, 47, 2993–2996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutua, F., Sharma, G., Grace, D., Bandyopadhyay, S., Shome, B., & Lindahl, J. (2020). A review of animal health and drug use practices in India, and their possible link to antimicrobial resistance. Antimicrobial Resistance and Infection Control, 9(1), 103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nanduri, B., Lawrence, M. L., Boyle, C. R., Ramkumar, M., & Burgess, S. C. (2006). Effects of subminimum inhibitory concentrations of antibiotics on the Pasteurella multocida proteome. Journal of Proteome Research, 5, 572–580.

    Article  CAS  PubMed  Google Scholar 

  • Nienhoff, U., Kadlec, K., Chaberny, I. F., Verspohl, J., Gerlach, G.-F., Schwarz, S., Simon, D., & Nolte, I. (2009). Transmission of methicillin resistant Staphylococcus aureus strains between humans and dogs: Two case reports. Journal of Antimicrobial Chemotherapy, 64(3), 660–662.

    Article  CAS  PubMed  Google Scholar 

  • Niewold, T. A. (2007). The non-antibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis, Poultry Science, 86, 605–609.

    Article  CAS  PubMed  Google Scholar 

  • O’Neill, J. (2015). Antimicrobials in agriculture and the environment: Reducing unnecessary use and waste (Vol. 40). The Review on Antimicrobial Resistance.

    Google Scholar 

  • O’Neill, J. (Ed.). (2016). Review on antimicrobial resistance. Tackling a global health crisis: Initial steps. Tackling drug resistant infections globally: Final report and recommendations. Welcome Trust – HM Government.

    Google Scholar 

  • Oliver, S. P., & Murinda, S. E. (2012). Antimicrobial resistance of mastitis pathogens. The Veterinary Clinics of North America. Food Animal Practice, 28(2), 165–185.

    Article  PubMed  Google Scholar 

  • Page, S. W., & Gautier, P. (2012). Use of antimicrobial agents in livestock. Revue Scientifique et Technique Office International des Epizooties, 31, 145–188.

    Article  CAS  Google Scholar 

  • Palma, E., Tilocca, B., & Roncada, P. (2020). Antimicrobial resistance in veterinary medicine: An overview. International Journal of Molecular Sciences, 21, 1914. https://doi.org/10.3390/ijms21061914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papich, M. G. (2013). Antibiotic treatment of resistant infections in small animals. Veterinary Clinics of North America: Small Animal Practice, 43(5), 1091–1107.

    Article  PubMed  Google Scholar 

  • Perry, J., Waglechner, N., & Wright, G. (2016). The prehistory of antibiotic resistance. Cold Spring Harbor Perspectives in Medicine, 6, a025197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pomba, C., Rantala, M., Greko, C., Baptiste, K. E., Catry, B., van Duijkeren, E., Mateus, A., Moreno, M. A., Pyörälä, S., Ružauskas, M., Sanders, P., Teale, C., Threlfall, E. J., Kunsagi, Z., Torren-Edo, J., Jukes, H., & Törneke, K. (2017). Public health risk of antimicrobial resistance transfer from companion animals. The Journal of Antimicrobial Chemotherapy, 72(4), 957–968.

    CAS  PubMed  Google Scholar 

  • Pormohammad, A., Nasiri, M. J., & Azimi, T. (2019). Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, foods, and the environment: A systematic review and meta-analysis. Infection and Drug Resistance, 12, 1187–1191.

    Article  Google Scholar 

  • Portis, E., Lindeman, C., Johansen, L., & Stoltman, G. (2012). A ten year (2000-2009) study of antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex-Mannheimia haemolytica Pasteurella multocida, and Histophilus somni – In the United States and Canada. Journal of Veterinary Diagnostic Investigation, 24, 932–944.

    Article  PubMed  Google Scholar 

  • Prescott, J. F. (2008). Antimicrobial use in food and companion animals. Animal Health Research Reviews, 9(2), 127–133.

    Article  PubMed  Google Scholar 

  • Prescott, J. F. (2017). History and current use of antimicrobial drugs in veterinary medicine. Microbiology Spectrum, 5(6), ARBA-0002-2017. https://doi.org/10.1128/microbiolspec.ARBA-0002-2017

    Article  Google Scholar 

  • Price, L. B., Stegger, M., Hasman, H., Aziz, M., Lrse, J., Andersen, P. S., Pearson, T., Waters, A. E., Foster, J. T., Schupp, J., Gillece, J., Driebe, E., Liu, C. M., Springer, B., Zdvoc, I., Battisti, A., Franco, A., Zmudzki, J., Schwarz, S., Butaye, P., Jouy, E., Pomba, C., Porrero, M. C., Ruimy, R., Smith, T. C., Robinson, D. A., Weese, J. S., Arriola, C. S., Yu, F., Laurent, F., Keim, P., Skov, R., & Aarestrup, F. M. (2012). Staphylococcus aureus cc398: Adaption and emergence of methicillin resistance in livestock. Microbiologica, 3(1), e00305–e00311.

    CAS  Google Scholar 

  • Raboisson, D., Ferchiou, A., Sans, P., Lhermie, G., & Derville, M. (2020). The economics of antimicrobial resistance in veterinary medicine: Optimising social benefits through mesoeconamic approaches from public and private perspectives. One Health, 10, 100145. https://doi.org/10.1016/j.onehlt.2020.100145

    Article  PubMed  PubMed Central  Google Scholar 

  • Redondo-Salvo, S., Fernandez-Lopez, R., Ruiz, R., Vielva, L., de Toro, M., Rocha, E. P. C., Garcillan-Barcia, M. P., & de la Cruz, F. (2020). Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nature Communications, 11, 1–13.

    Article  Google Scholar 

  • Reeks, B. Y., Champlin, F. R., Paulsen, D. B., Scruggs, D. W., & Lawrence, M. L. (2005). Effects of sub-minimum inhibitory concentration of antibiotic levels and temperature on growth kinetics and outer membrane protein expression in Mannheimia haemolytica and Haemophilus somnus. Canadian Journal of Veterinary Research, 69, 1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandberg, T., Stenqvist, K., & Svanborg-Eden, C. (1979). Effects of sub-minimal inhibitory concentrations of ampicillin, chloramphenicol, and nitrofurantoin on the attachment of Escherichia coli to human uroepithelial cells in vitro. Reviews of Infectious Diseases, 1, 838–844.

    Article  CAS  PubMed  Google Scholar 

  • Sherry, N., & Howden, B. (2018). Emerging gram-negative resistance to last-line antimicrobial agents Fosfomycin, colistin, and ceftazidime-avibactum – Epidemiology, laboratory detection, and treatment implications. Expert Review of Anti-Infective Therapy, 16(4), 289–306.

    Article  CAS  PubMed  Google Scholar 

  • Song, H.-J., Kim, S.-J., Moon, D. C., Mechesso, A. F., Choi, J.-H., Kang, H. Y., Boby, N., Yoon, S.-S., & Lim, S.-K. (2022). Antimicrobial resistance in Escherichia coli isolates from healthy food animals in South Korea, 2010–2020. Microorganisms, 10, 524–535.

    Article  PubMed  PubMed Central  Google Scholar 

  • Starner, T. D., Shrout, J. D., Parsek, M. R., Appelbaum, P. C., & Kim, G. (2008). Subinhibitory concentrations of azithromycin decrease non-typeable Haemophilus influenzae biofilm formation and diminish established biofilms. Antimicrobial Agents and Chemotherapy, 52, 137–145.

    Article  CAS  PubMed  Google Scholar 

  • Swann, N. N. (1969). Report of the joint committee on the use of antibiotics in animal husbandry and veterinary medicine. HMSO.

    Google Scholar 

  • Sweileh, W. M. (2021). Global research activity on antimicrobial resistance in food-producing animals. Archives of Public Health, 79, 49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang, K. L., Caffrey, N. P., Nobrega, D. B., Cork, S. C., Ronksley, P. E., Barkema, H. W., Polachek, A., Ganshorn, H., Sharman, N., Kellner, J. D., & Ghali, W. A. (2017). Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systemic review and meta-analysis. Lancet Planetary Health, 1(8), e316–e327.

    Article  PubMed  Google Scholar 

  • Teillant, A., & Laxminarayan, R. (2015). Economics of antibiotic use in US swine and poultry production. Choices, 30(1), 1–11.

    Google Scholar 

  • Vaarten, J. (2012). Clinical impact of antimicrobial resistance in animals. Revue Scientifique et Technique Office International des Epizooties, 31, 221–229.

    Article  CAS  Google Scholar 

  • Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the USA, 112(18), 5649–5654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Boeckel, T. P., Glennon, E. E., Che, D., Gilbert, M., Robinson, T. P., Grenfell, B. T., Levin, S. A., Bonhoeffer, S., & Laxminarayan, R. (2017). Reducing antimicrobial use in food animals. Science, 357(6358), 1350–1352.

    Article  PubMed  Google Scholar 

  • Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S., & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science, 365, eaaw1944.

    Article  PubMed  Google Scholar 

  • Van Duijkeren, E., Catry, B., Greko, C., Moreno, M. A., Pomba, M. C., Pyorala, S., Ruzauskas, M., Sansders, P., Threlfall, E. J., Torren-Edo, J., & Torneke, K. (2011). Review on methicillin resistant staphylococcus pseudintermidius. Journal of Antimicrobial Chemotherapy, 66(12), 2705–2714.

    Article  PubMed  Google Scholar 

  • Van Epps, A., & Blaney, L. (2016). Antibiotic residues in animal waste: Occurrence and degradation in conventional agricultural waste management practices. Current Pollution Reports, 2, 135–155.

    Article  Google Scholar 

  • Wang, R., van Dorp, L., Shaw, L. P., Bradley, P., Wang, Q., Wang, X., Jin, L., Zhang, Q., Liu, Y., Rieux, A., Dorai-Schneiders, T., Weinert, L. A., Iqbal, Z., Didelot, X., Wang, H., & Balloux, F. (2018). The global distribution and spread of the mobilised colistin resistance gene mcr-1. Nature Communications, 9, 1179.

    Article  PubMed  PubMed Central  Google Scholar 

  • Willems, R. J. L., Top, J., van den Braak, N., van Belkum, A., Endtz, H., Mevius, D., Stoberringh, E., van den Bogaard, A., & van Embden, J. D. A. (2000). Host specificity of vancomycin-resistant enterococcus faecium. The Journal of Infectious Diseases, 182, 816–823.

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (WHO). (2017). Integrated surveillance of antimicrobial resistance in food borne bacteria: Application of a one health approach. WHO. Licence: CC BY-NC-SA 3.0 IGO.

    Google Scholar 

  • World Health Organization (WHO). (2019). Critically important antimicrobials for human medicine, 6th revision. WHO. 9789241515528-eng.pdf (who.int)

    Google Scholar 

  • World Organisation for Animal Health (OIE). (2007). OIE list of antimicrobials of veterinary importance. OIE. https://www.oie.int/app/uploads/2021/03/oie-list-antimicrobials.pdf

    Google Scholar 

  • Xiong, W., Sun, Y., & Zeng, Z. (2018). Antimicrobial use and antimicrobial resistance in food animals. Environmental Science and Pollution Research, 25, 18377–18384.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Kumar P .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

P, A.K. (2023). Antimicrobial reistance in Animal sector. In: Mothadaka, M.P., Vaiyapuri, M., Rao Badireddy, M., Nagarajrao Ravishankar, C., Bhatia, R., Jena, J. (eds) Handbook on Antimicrobial Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-9723-4_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9723-4_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9723-4

  • Online ISBN: 978-981-16-9723-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics