Skip to main content

Amphenicols: Dilemma of Use and Abuse in Poultry

  • Living reference work entry
  • First Online:
Handbook on Antimicrobial Resistance

Abstract

In the past decade, an exemplary transference had taken place in poultry production system across the world that ranges from marginal animal husbandry practices used by small poultry farmers to intensive poultry production system, including routine antimicrobial usage both for therapeutic purposes and enhancing productivity in the poultry and meat industry. This shift has not only resulted in increased antimicrobials that are available for use in poultry but has also increased the chances of antimicrobial resistance in lower resources focused on intensive production system. It is well established that bacterial resistance diminishes the antimicrobials that are available for poultry and meat production, and this may have a serious impact on human medicine as it will reduce the choices and efficacy of antibiotics that are going to be used for clinical settings. Antibiotic resistance has far-reaching consequences in the form of high disease incidences consequently putting economic burden on the meat industry, people, and nations. The poultry industry across the world contributes to the chunk of antimicrobials used in the animal husbandry sector. Imprudent use of antimicrobials, especially amphenicols, in viable small-scale poultry has serious repercussions on poultry and human health besides exacerbating poverty and food insecurity. Although amphenicols are known to be effective antimicrobials, but these are also known to cause bone marrow suppression and have also been reportedly causing liver damage, resulting in abnormal liver functions and jaundice and should be used with great caution in birds, as they may have serious repercussions on human health also. In humans, amphenicols can cause dangerous anemia and can have neurological manifestations resulting in mental disorders, sometimes resulting in allergic reactions and gastrointestinal symptoms, along with nausea, poor appetite, and vomiting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Access Science Editors. (2017). U.S. bans antibiotics use for enhancing growth in livestock. McGraw-Hill Education. https://doi.org/10.1036/1097-8542.BR0125171. Accessed May 2018.

  • Ajayi, A. O., & Egbebi, A. O. (2011). Antibiotic susceptibility of Salmonella typhi and Klebsiella pneumoniae from poultry and local birds in Ado-Ekiti, Ekiti-state. Nigeria. Annals of Biological Research, 2(3), 431–437.

    Google Scholar 

  • Akhtar, M. H., ElSooud, K. A., Shehata, A. M., & Anwar-ul-Haq. (1996). Fate and residues of C-14-chloramphenicol in laying chickens. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 31, 1061–1084.

    CAS  PubMed  Google Scholar 

  • Altekruse, S. F., Stern, N. J., Fields, P. I., & Swerdlow, D. L. (1999). Campylobacter jejuni–an emerging food borne pathogen. Emerging Infectious Diseases, 5, 28–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anadon, A., Bringas, P., Martı’nez-Larrañaga, M. R., & Diaz, M. J. (1994). Bioavailability, pharmacokinetics and residues of chloramphenicol in the chicken. Journal of Veterinary Pharmacology and Therapeutics, 17, 52–58.

    Article  CAS  PubMed  Google Scholar 

  • Anadon, A., Martinez, M. A., Martinez, M., Rios, A., Caballero, V., Ares, I., & Martı’nez-Larrañaga, M. R. (2008). Plasma and tissue depletion of florfenicol and florfenicol-amine in chickens. Journal of Agricultural and Food Chemistry, 56, 11049–11056.

    Article  CAS  PubMed  Google Scholar 

  • Arcangioli, M. A., Leroy-Setrin, S., Martel, J. L., & Chaslus-Dancla, E. (1999). A new chloramphenicol and florfenicol resistance gene flanked by two integron structures in Salmonella typhimurium DT104. FEMS Microbiology Letter, 174(2), 327–332.

    Article  CAS  Google Scholar 

  • Bhedi, K. R., Nayak, J. B., Brahmbhatt, M. N., & Roy, A. (2018). Detection and molecular characterization of methicillin-resistant Staphylococcus aureus obtained from poultry and poultry house environment of Anand district, Gujarat, India. International Journal Current Microbiology and Applied Sciences, 7, 867–872.

    Article  Google Scholar 

  • Bishop, Y. (2001). The veterinary formulary (5th ed., p. 692). Pharmaceutical Press.

    Google Scholar 

  • Boamah, V. E., Agyare, C., Odoi, H., & Dalsgaard, A. (2016). Antibiotic practices and factors influencing the use of antibiotics in selected poultry farms in Ghana. Journal of Antimicrobial Agents, 2, 120. https://doi.org/10.4172/2472-1212.1000120

    Article  Google Scholar 

  • Botsoglou, N. A., & Fletouris, D. J. (2001). Drug residues in food. Marcel Dekker, Inc.

    Google Scholar 

  • Braykov, N. P., Eisenberg, J. N., Grossman, M., Zhang, L., Vasco, K., Cevallos, W., & Levy, K. (2016). Antibiotic resistance in animal and environmental samples associated with small-scale poultry farming in northwestern Ecuador. mSphere, 1(1). https://doi.org/10.1128/mSphere.00021-15

  • Castanon, J. I. R. (2007). History of the use of antibiotic as growth promoters in European poultry feeds. Poultry Science, 86, 2466–2471.

    Article  CAS  PubMed  Google Scholar 

  • Chan, T. Y. (1999). Health hazards due to clenbuterol residues in food. Journal of Toxicology: Clinical Toxicology, 37, 517e9.

    Google Scholar 

  • Chen, Z., & Jiang, X. (2014). Microbiological safety of chicken litter or chicken litter-based organic fertilizers. A review. Agriculture, 4, 1–29.

    Article  Google Scholar 

  • Davis, J. L., Smith, G. W., Baynes, R. E., Tell, L. A., Webb, A. I., & Riviere, J. E. (2009). Update on drugs prohibited from extralabel use in food animals. Journal of the American Veterinary Medical Association, 235, 528–534.

    Article  PubMed  Google Scholar 

  • Diarra, M. S., & Malouin, F. (2014). Antibiotics in Canadian poultry productions and anticipated alternatives. Frontier Microbiology, 5, 282.

    Google Scholar 

  • Ding, F., Peng, W., Peng, Y. K., & Jiangd, Y. T. (2014). Renal protein reactivity and stability of antibiotic amphenicols: Structure and affinity. Molecular BioSystems. https://doi.org/10.1039/c4mb00220b

  • Feder, H. M., Osier, C., & Maderazo, E. G. (1981). Chloramphenicol: A review of its use in clinical-practice. Reviews of Infectious Diseases, 3, 479–491.

    Article  PubMed  Google Scholar 

  • Fielding, B. C., Mnabisa, A., Gouws, P. A., & Morris, T. (2012). Antimicrobial-resistant Klebsiella species isolated from free-range chicken samples in an informal settlement. Archives of Medical Science, 8(1), 39–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassner, B., & Wuethrich, A. (1994). Pharmacokinetic and toxicological aspects of the medication of beef-type calves with an oral formulation of chloramphenicol palmitate. Journal of Veterinary Pharmacology and Therapeutics, 17, 279e83.

    Article  Google Scholar 

  • Gonzalez Ronquillo, M., & Angeles Hernandez, J. C. (2017). Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods. Food Control, 72, 255e67. Part B.

    Article  Google Scholar 

  • Graham, J. P., Evans, S. L., Price, L. B., & Silbergeld, E. K. (2009). Fate of antimicrobial-resistant enterococci and staphylococci and resistance determinants in stored poultry litter. Environmental Research, 109(6), 682–689.

    Article  CAS  PubMed  Google Scholar 

  • Heuer, H., Kopmann, C., Binh, C. T., Top, E. M., & Smalla, K. (2009). Spreading antibiotic resistance through spread manure: Characteristics of a novel plasmid type with low %G+C content. Environental Microbiology, 11, 937–949.

    Article  CAS  Google Scholar 

  • Jaganmohan, N. (2020). Consumption volume of poultry meat in India from 2013 to 2019. Statista. Retrieved July 12, 2020, from https://www.statista.com/statistics/826711/india-poultry-meat-consumption

  • Kehrenberg, C., Schwarz, S., Jacobsen, L., Hansen, L. H., & Vester, B. (2005). A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: Methylation of 23S ribosomal RNA at A2503. Molecular Microbiology, 57(4), 1064–1073.

    Article  CAS  PubMed  Google Scholar 

  • Krauland, M. G., Marsh, J. W., Paterson, D. L., & Harrison, L. H. (2009). Integron-mediated multidrug resistance in a global collection of nontyphoidal salmonella enterica isolates. Emerging Infectious Diseases, 15(3), 388–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kummerer, K. (2009). ‘Antibiotics in the aquatic environment – A review part I. Chemosphere, 75, 417–34.

    PubMed  Google Scholar 

  • Lewis, K. (2013). Platforms for antibiotic discovery. Nature Review Drug Discovery, 12(5), 371–387.

    Article  CAS  PubMed  Google Scholar 

  • Manzetti, S., & Ghisi, R. (2014). The environmental release and fate of antibiotics. Marine Pollution Bulletin, 79, 7–15.

    Article  CAS  PubMed  Google Scholar 

  • Medeiros, M. A. N., de Oliveira, D. C. N., Rodrigues, D. P., & de Freitas, D. R. C. (2011). Prevalence and antimicrobial resistance of salmonella in chicken carcasses at retail in 15 Brazilian cities. Pan American Journal of Public Health, 30, 555–560.

    Article  PubMed  Google Scholar 

  • Moore, P. R., Evenson, A., Luckey, T. D., McCoy, E., Elvehjem, C. A., & Hart, E. B. (1946). Use of sulfasuxidine, streptothricin, and streptomycin in nutritional studies with the chick. Journal of Biological Chemistry, 165, 437–441.

    Article  CAS  PubMed  Google Scholar 

  • Mouttotou, N., Ahmad, S., Kamran, Z., & Koutoulis, K. C. (2017). Prevalence, risks and antibiotic resistance of salmonella in poultry production chain. In M. Mares (Ed.) Current topics in salmonella and salmonellosis (Chap. 12, pp. 215–234). InTech.

    Google Scholar 

  • Msoffe, P. L., Aning, K. G., Byarugaba, D. K., Mbuthia, P. G., Sourou, S., Cardona, C., Bunn, D. A., Nyaga, P. N., Njagi, L. W., Maina, A. N., & Kiama, S. G. (2009). Handbook of poultry diseases important in Africa (p. 83). CRSP: A Project of the Global Livestock.

    Google Scholar 

  • Murray, I. A., & Shaw, W. V. (1997). O-acetyltransferases for chloramphenicol and other natural products. Antimicrobial Agents Chemotherapy, 41(1), 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musovic, S., Oregaard, G., Kroer, N., & Sorensen, S. J. (2006). Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among gram-positive and gram-negative bacteria indigenous to the barley rhizosphere. Applied Environmental Microbiology, 72, 6687–6692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odoi, H. (2016). Isolation and characterization of multi-drug resistant Pseudomonas aeruginosa from clinical, environmental and poultry litter sources in Ashanti region of Ghana (MPhil thesis). Kumasi: Kwame Nkrumah University of Science and Technology.

    Google Scholar 

  • Osman, K. M., & Elhariri, M. (2013). Antibiotic resistance of Clostridium perfringens isolates from broiler chickens in Egypt. Review of Science and Technology, 32(2), 841–850.

    Article  CAS  Google Scholar 

  • Papich, M. G., & Riviere, J. E. (2001). Chloramphenicols and derivatives, macrolides, lincosamides, and miscellaneous antimicrobials. In H. R. Adams (Ed.), Veterinary phamacology and therapeutics (8th ed., pp. 868–917). Iowa State University Press.

    Google Scholar 

  • Pearson, A. D., Greenwood, M. H., Feltham, R. K., Healing, T. D., Donalsdon, J., & Jones, D. M. (1996). Microbial ecology of campylobacter jejuni in a United Kingdom chicken supply chain: Intermittent common source, vertical transmission, and amplification by flock propagation. Applied Environmental Microbiology, 62, 4614–4620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podschun, R., & Ullmann, U. (1998). Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Journal of Clinical Microbiology, 11(4), 589–603.

    Article  CAS  Google Scholar 

  • RUMA. (2016). Responsible use of medicines in agriculture alliance (Ruma) information on antibiotic resistance. Ruma.org.UK/about/position-papers/ruma-informationnote- antibiotics-responsible-use-antibiotics-farm-animals/

  • Sams, A. R. (2001). Poultry meat processing (p. 345). CRC Press.

    Google Scholar 

  • Settepani, J. A. (1984). The hazard of using chloramphenicol in food animals. Journal of the American Veterinary Medical Association, 184, 930–931.

    CAS  PubMed  Google Scholar 

  • Smith, T. C., Gebreyes, W. A., Abley, M. J., Harper, A. L., Forshey, B. M., Male, M. J., & Davies, P. R. (2013). Methicillin-resistant Staphylococcus aureus in pigs and farm workers on conventional and antibiotic-free swine farms in the USA. PLoS One, 8(5).

    Google Scholar 

  • Stapleton, P. D., & Taylor, P. W. (2007). Methicillin resistance in Staphylococcus aureus. Science Progress, 85, 57–72.

    Article  Google Scholar 

  • Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings. National Academy of Sciences. United States of America, 112(18), 5649–5654.

    Article  Google Scholar 

  • Van den Bogaard, A. E., London, N., Driessen, C., & Stobberingh, E. E. (2001). Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. Journal of Antimicrobial Chemotherapy, 47(6), 763–771.

    Article  PubMed  Google Scholar 

  • Wilson, I. G. (2003). Antibiotic resistance of campylobacter in raw retail chickens and imported chicken portions. Epidemiology and Infection, 131, 1181–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • www.fao.org/poultry

  • www.poultrymed.com/Amphenicols

  • Yulistiani, R., Praseptiangga, D., Raharjo, D., & Shirakawa, T. (2017). Prevalence of antibioticresistance enterobacteriaceae strains isolated from chicken meat at traditional markets in Surabaya, Indonesia. In IOP Conference Series: Materials Science and Engineering (Vol. 193, p. 012007). IOP Publishing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sharma, S.K., Galav, V., Rathore, P.S. (2023). Amphenicols: Dilemma of Use and Abuse in Poultry. In: Mothadaka, M.P., Vaiyapuri, M., Rao Badireddy, M., Nagarajrao Ravishankar, C., Bhatia, R., Jena, J. (eds) Handbook on Antimicrobial Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-9723-4_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9723-4_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9723-4

  • Online ISBN: 978-981-16-9723-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics