Skip to main content

Targeting the Transcription Factors of ROS Tumorigenic Pathways as a Therapeutic Strategy in Cancer

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Emerging of reactive oxygen species (ROS) on the earth with the first oxygen molecule in the atmosphere around 2.4–3.8 billion years ago, and they have been associated with aerobic life ever since. Insufficient reduction of oxygen molecule led to the creation of chemically more reactive species such as superoxide anion (O2), hydrogen peroxide (H2O2), hydroxyl radicals (OH), and singlet oxygen (1O2), collectively coined as reactive oxygen species (ROS). Both the extrinsic environment and endogenous metabolism contribute to physiologically relevant ROS in human cells. Excessive production of ROS in the cells can structurally and/or functionally degrade the macromolecules such as nucleic acids, proteins, and lipids which has been linked to oxidative stress mediating diseases, those are considered to be oncogenic, promoting genomic instability, and tumorigenesis. There has been a great deal of study relating ROS to many physiological functions related to variety of disorders, include cancer, diabetes, atherosclerosis, and neurodegeneration. Cancer cells augment their rate of ROS production to overactivate tumorigenic signaling events by promoting oncogenic mutations, losing tumor suppressors, enhancing their metabolism, and adjusting to hypoxia. In this chapter, we are going to discuss about the sources of ROS, role in cancer and how the key transcription factors such as NRF2, P53, and HIF-1α can be used as a targeted for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse ML, Schreiber S, Schafer H (2013) Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32(40):4825–4835

    Article  CAS  PubMed  Google Scholar 

  • Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS (2018) Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ 25(1):154–160

    Article  CAS  PubMed  Google Scholar 

  • Bergholz J, Xiao ZX (2012) Role of p63 in development, tumorigenesis and cancer progression. Cancer Microenviron 5(3):311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brivanlou AH, Darnell JE Jr (2002) Signal transduction and the control of gene expression. Science 295(5556):813–818

    Article  CAS  PubMed  Google Scholar 

  • Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J, Noblin DJ, Jorgensen WL, Ciulli A, Crews CM (2012) Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1alpha interaction. J Am Chem Soc 134(10):4465–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bykov VJ, Issaeva N, Zache N, Shilov A, Hultcrantz M, Bergman J, Selivanova G, Wiman KG (2005) Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J Biol Chem 280(34):30384–30391

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJN, Eriksson SE, Bianchi J, Wiman KG (2018) Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer 18(2):89–102

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Hou M, Guan YS, Jiang M, Yang Y, Gou HF (2009) Expression of HIF-1alpha and VEGF in colorectal cancer: association with clinical outcomes and prognostic implications. BMC Cancer 9:432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chu XY, Li ZJ, Zheng ZW, Tao YL, Zou FX, Yang XF (2018) KEAP1/NRF2 signaling pathway mutations in cervical cancer. Eur Rev Med Pharmacol Sci 22(14):4458–4466

    PubMed  Google Scholar 

  • Courtney KD, Ma Y, Diaz de Leon A, Christie A, Xie Z, Woolford L, Singla N, Joyce A, Hill H, Madhuranthakam AJ, Yuan Q, Xi Y, Zhang Y, Chang J, Fatunde O, Arriaga Y, Frankel AE, Kalva S, Zhang S, McKenzie T, Reig Torras O, Figlin RA, Rini BI, McKay RM, Kapur P, Wang T, Pedrosa I, Brugarolas J (2020) HIF-2 complex dissociation, target inhibition, and acquired resistance with PT2385, a first-in-class HIF-2 inhibitor, in patients with clear cell renal cell carcinoma. Clin Cancer Res 26(4):793–803

    Article  CAS  PubMed  Google Scholar 

  • Darnell JE Jr (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2(10):740–749

    Article  CAS  PubMed  Google Scholar 

  • Del Rio LA, Lopez-Huertas E (2016) ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol 57(7):1364–1376

    PubMed  Google Scholar 

  • DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475(7354):106–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy MJ, Synnott NC, O’Grady S, Crown J (2020) Targeting p53 for the treatment of cancer. Semin Cancer Biol S1044-579X(20)30160-7

    Google Scholar 

  • Duong HQ, Yi YW, Kang HJ, Hong YB, Tang W, Wang A, Seong YS, Bae I (2014) Inhibition of NRF2 by PIK-75 augments sensitivity of pancreatic cancer cells to gemcitabine. Int J Oncol 44(3):959–969

    Article  CAS  PubMed  Google Scholar 

  • Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D, Yang A, McKeon F, Jacks T (2005) Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7(4):363–373

    Article  CAS  PubMed  Google Scholar 

  • Franovic A, Gunaratnam L, Smith K, Robert I, Patten D, Lee S (2007) Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc Natl Acad Sci U S A 104(32):13092–13097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge W, Zhao K, Wang X, Li H, Yu M, He M, Xue X, Zhu Y, Zhang C, Cheng Y, Jiang S, Hu Y (2017) iASPP is an antioxidative factor and drives cancer growth and drug resistance by competing with Nrf2 for Keap1 binding. Cancer Cell 32(5):561–573 e566

    Article  CAS  PubMed  Google Scholar 

  • Goldstein M, Kastan MB (2015) The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med 66:129–143

    Article  CAS  PubMed  Google Scholar 

  • Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC (2007) HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11(4):335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziano V, De Laurenzi V (2011) Role of p63 in cancer development. Biochim Biophys Acta 1816(1):57–66

    CAS  PubMed  Google Scholar 

  • Gruber G, Greiner RH, Hlushchuk R, Aebersold DM, Altermatt HJ, Berclaz G, Djonov V (2004) Hypoxia-inducible factor 1 alpha in high-risk breast cancer: an independent prognostic parameter? Breast Cancer Res 6(3):R191–R198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guha T, Malkin D (2017) Inherited TP53 mutations and the Li-fraumeni syndrome. Cold Spring Harbor Perspect Med 7(4):a026187

    Article  CAS  Google Scholar 

  • Hainaut P, Milner J (1993) Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res 53(19):4469–4473

    CAS  PubMed  Google Scholar 

  • Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    Article  CAS  PubMed  Google Scholar 

  • Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24(17):2899–2908

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39(4):199–218

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT (2010) Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 13(11):1713–1748

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, Dinkova-Kostova AT, Tew KD (2020) Oxidative stress in cancer. Cancer Cell 38(2):167–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iatsenko I, Boquete JP, Lemaitre B (2018) Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase nox and shortens drosophila lifespan. Immunity 49(5):929–942e925

    Article  CAS  PubMed  Google Scholar 

  • Joerger AC, Fersht AR (2010) The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol 2(6):a000919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaelin WG Jr (2008) The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8(11):865–873

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Jeong JW, Park JA, Lee JW, Seo JH, Jung BK, Bae MK, Kim KW (2007) Regulation of the HIF-1alpha stability by histone deacetylases. Oncol Rep 17(3):647–651

    CAS  PubMed  Google Scholar 

  • Kim YR, Oh JE, Kim MS, Kang MR, Park SW, Han JY, Eom HS, Yoo NJ, Lee SH (2010) Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol 220(4):446–451

    Article  CAS  PubMed  Google Scholar 

  • Konstantinopoulos PA, Spentzos D, Fountzilas E, Francoeur N, Sanisetty S, Grammatikos AP, Hecht JL, Cannistra SA (2011) Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer. Cancer Res 71(15):5081–5089

    Article  CAS  PubMed  Google Scholar 

  • Lau LM, Nugent JK, Zhao X, Irwin MS (2008) HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene 27(7):997–1003

    Article  CAS  PubMed  Google Scholar 

  • Lee TI, Young RA (2013) Transcriptional regulation and its misregulation in disease. Cell 152(6):1237–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44(5):479–496

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Samanta D, Xiang L, Zhang H, Hu H, Chen I, Bullen JW, Semenza GL (2015) Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype. Proc Natl Acad Sci U S A 112(33):E4600–E4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M, Tewari M, Liu A, Vessella R, Rostomily R, Born D, Horwitz M, Ware C, Blau CA, Cleary MA, Rich JN, Ruohola-Baker H (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71(13):4640–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menegon S, Columbano A, Giordano S (2016) The dual roles of NRF2 in cancer. Trends Mol Med 22(7):578–593

    Article  CAS  PubMed  Google Scholar 

  • Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M, Motohashi H (2012) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22(1):66–79

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LXT, Troadec E, Kalvala A, Kumar B, Hoang DH, Viola D, Zhang B, Nguyen DQ, Aldoss I, Ghoda L, Budde E, Pichiorri F, Rosen S, Forman SJ, Marcucci G, Pullarkat V (2019) The Bcl-2 inhibitor venetoclax inhibits Nrf2 antioxidant pathway activation induced by hypomethylating agents in AML. J Cell Physiol 234(8):14040–14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, Suzuki T, Kobayashi A, Yokota J, Sakiyama T, Shibata T, Yamamoto M, Hirohashi S (2008) Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68(5):1303–1309

    Article  CAS  PubMed  Google Scholar 

  • Olayanju A, Copple IM, Bryan HK, Edge GT, Sison RL, Wong MW, Lai ZQ, Lin ZX, Dunn K, Sanderson CM, Alghanem AF, Cross MJ, Ellis EC, Ingelman-Sundberg M, Malik HZ, Kitteringham NR, Goldring CE, Park BK (2015) Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med 78:202–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, Kang MI, Kobayashi A, Yokoyama S, Yamamoto M (2006) Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 21(5):689–700

    Article  CAS  PubMed  Google Scholar 

  • Pajares M, Cuadrado A, Rojo AI (2017) Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases. Redox Biol 11:543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3(4):347–361

    Article  PubMed  Google Scholar 

  • Petrella BL, Lohi J, Brinckerhoff CE (2005) Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von Hippel-Lindau renal cell carcinoma. Oncogene 24(6):1043–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piantino CB, Reis ST, Viana NI, Silva IA, Morais DR, Antunes AA, Dip N, Srougi M, Leite KR (2013) Prima-1 induces apoptosis in bladder cancer cell lines by activating p53. Clinics (Sao Paulo) 68(3):297–303

    Article  Google Scholar 

  • Ramos-Gomez M, Dolan PM, Itoh K, Yamamoto M, Kensler TW (2003) Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene-DNA adducts and tumor yield in mice. Carcinogenesis 24(3):461–467

    Article  CAS  PubMed  Google Scholar 

  • Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25(13):5675–5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh JL, Ko JH, Moon SJ, Ryu CH, Choi JY, Koch WM (2012) The p53-reactivating small-molecule RITA enhances cisplatin-induced cytotoxicity and apoptosis in head and neck cancer. Cancer Lett 325(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Rojo de la Vega M, Dodson M, Gross C, Mansour HM, Lantz RC, Chapman E, Wang T, Black SM, Garcia JG, Zhang DD (2016) Role of Nrf2 and autophagy in acute lung injury. Curr Pharmacol Rep 2(2):91–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rojo de la Vega M, Chapman E, Zhang DD (2018) NRF2 and the hallmarks of cancer. Cancer Cell 34(1):21–43

    Article  CAS  PubMed  Google Scholar 

  • Rojo AI, Rada P, Mendiola M, Ortega-Molina A, Wojdyla K, Rogowska-Wrzesinska A, Hardisson D, Serrano M, Cuadrado A (2014) The PTEN/NRF2 axis promotes human carcinogenesis. Antioxid Redox Signal 21(18):2498–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rufini A, Agostini M, Grespi F, Tomasini R, Sayan BS, Niklison-Chirou MV, Conforti F, Velletri T, Mastino A, Mak TW, Melino G, Knight RA (2011) p73 in cancer. Genes Cancer 2(4):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saddawi-Konefka R, Seelige R, Gross ET, Levy E, Searles SC, Washington A Jr, Santosa EK, Liu B, O’Sullivan TE, Harismendy O, Bui JD (2016) Nrf2 induces IL-17D to mediate tumor and virus surveillance. Cell Rep 16(9):2348–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL (2014) Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci U S A 111(50):E5429–E5438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M, Jakesz R, Kubista E, Birner P, Oberhuber G, Austrian B, G. Colorectal Cancer Study (2002) Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8(6):1831–1837

    CAS  PubMed  Google Scholar 

  • Scian MJ, Carchman EH, Mohanraj L, Stagliano KE, Anderson MA, Deb D, Crane BM, Kiyono T, Windle B, Deb SP, Deb S (2008) Wild-type p53 and p73 negatively regulate expression of proliferation related genes. Oncogene 27(18):2583–2593

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T, Yamamoto M, Hirohashi S (2008) Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135(4):1358–1368, 1368 e1351–1354

    Article  CAS  PubMed  Google Scholar 

  • Sriramajayam K, Peng D, Lu H, Zhou S, Bhat N, McDonald OG, Que J, Zaika A, El-Rifai W (2021) Activation of NRF2 by APE1/REF1 is redox-dependent in Barrett’s related esophageal adenocarcinoma cells. Redox Biol 43:101970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896

    Article  CAS  PubMed  Google Scholar 

  • Suh KY, Lacouture M, Gerami P (2007) p63 in primary cutaneous carcinosarcoma. Am J Dermatopathol 29(4):374–377

    Article  PubMed  Google Scholar 

  • Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM (2018) Mechanisms of transcriptional regulation by p53. Cell Death Differ 25(1):133–143

    Article  CAS  PubMed  Google Scholar 

  • Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16(2):123–140

    Article  CAS  PubMed  Google Scholar 

  • Tao S, Wang S, Moghaddam SJ, Ooi A, Chapman E, Wong PK, Zhang DD (2014) Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Res 74(24):7430–7441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telkoparan-Akillilar P, Panieri E, Cevik D, Suzen S, Saso L (2021) Therapeutic targeting of the NRF2 signaling pathway in cancer. Molecules 26(5):1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrente L, DeNicola GM (2021) Targeting NRF2 and its downstream processes: opportunities and challenges. Annu Rev Pharmacol Toxicol 62

    Google Scholar 

  • Trastour C, Benizri E, Ettore F, Ramaioli A, Chamorey E, Pouyssegur J, Berra E (2007) HIF-1alpha and CA IX staining in invasive breast carcinomas: prognosis and treatment outcome. Int J Cancer 120(7):1451–1458

    Article  CAS  PubMed  Google Scholar 

  • Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem 281(14):9030–9037

    Article  CAS  PubMed  Google Scholar 

  • Unwith S, Zhao H, Hennah L, Ma D (2015) The potential role of HIF on tumour progression and dissemination. Int J Cancer 136(11):2491–2503

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A 101(7):2040–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zheng T, Chen X, Song X, Meng X, Bhatta N, Pan S, Jiang H, Liu L (2011) MDM2 antagonist can inhibit tumor growth in hepatocellular carcinoma with different types of p53 in vitro. J Gastroenterol Hepatol 26(2):371–377

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu X, Long M, Huang Y, Zhang L, Zhang R, Zheng Y, Liao X, Wang Y, Liao Q, Li W, Tang Z, Tong Q, Wang X, Fang F, Rojo de la Vega M, Ouyang Q, Zhang DD, Yu S, Zheng H (2016) NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci Transl Med 8(334):334ra351

    Article  CAS  Google Scholar 

  • Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao HL, Liu HX (2021) The double-edged roles of ROS in cancer prevention and therapy. Theranostics 11(10):4839–4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JR, Harris RA, Lee SR, Craigon MH, Binley K, Price T, Beard GL, Mundy CR, Naylor S (2004) Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. Genomics 83(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Lu H, Bai Y (2019) Nrf2 in cancers: a double-edged sword. Cancer Med 8(5):2252–2267

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue C, Li X, Liu G, Liu W (2016) Evaluation of mitochondrial respiratory chain on the generation of reactive oxygen species and cytotoxicity in HaCaT cells induced by nanosized titanium dioxide under UVA irradiation. Int J Toxicol 35(6):644–653

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang X, Zhang Y, Zhu D, Zhang L, Li Y, Zhu Y, Li D, Zhou J (2016) HIF-2alpha promotes epithelial-mesenchymal transition through regulating Twist2 binding to the promoter of E-cadherin in pancreatic cancer. J Exp Clin Cancer Res 35:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoboue ED, Sitia R, Simmen T (2018) Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death Dis 9(3):331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshino H, Murakami K, Nawamaki M, Kashiwakura I (2018) Effects of Nrf2 knockdown on the properties of irradiated cell conditioned medium from A549 human lung cancer cells. Biomed Rep 8(5):461–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • You A, Nam CW, Wakabayashi N, Yamamoto M, Kensler TW, Kwak MK (2011) Transcription factor Nrf2 maintains the basal expression of Mdm2: an implication of the regulation of p53 signaling by Nrf2. Arch Biochem Biophys 507(2):356–364

    Article  CAS  PubMed  Google Scholar 

  • Zagzag D, Krishnamachary B, Yee H, Okuyama H, Chiriboga L, Ali MA, Melamed J, Semenza GL (2005) Stromal cell-derived factor-1alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 65(14):6178–6188

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, Dong W (2016) ROS and ROS-mediated cellular signaling. Oxidative Med Cell Longev 2016:4350965

    Google Scholar 

  • Zhu G, Pan C, Bei JX, Li B, Liang C, Xu Y, Fu X (2020) Mutant p53 in cancer progression and targeted therapies. Front Oncol 10:595187

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannappan Sriramajayam .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sriramajayam, K., Caspa Gokulan, R., Tharmalingam, J. (2022). Targeting the Transcription Factors of ROS Tumorigenic Pathways as a Therapeutic Strategy in Cancer. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_275-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_275-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics