Skip to main content

Targeting Redox Homeostasis of Tumor Cells by Therapeutic Compounds in Cancer

An Indian Perspective

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Cancer is one of the significant causes of morbidity and mortality in the world. The role of oxidative stress in tumor progression and metastasis has been under focus since the last two decades, suggesting the importance of redox balance upon which cancer cells thrive to promote oncogenic phenotype. Therefore, it is highly warranted to develop therapies that can disrupt the fine-tuned intracellular reactive oxygen species (ROS) balance of tumor cells. Even though classical chemotherapy, radiotherapy, and many FDA-approved chemotherapeutic drugs modulate ROS levels, the associated side effects make it worthwhile to explore alternative options. Various compounds of natural origin have high efficacy and minimum side effects and pose a low risk of recurrence. This chapter has been compiled to give a thorough account of medicinal plants of Indian origin that have been implicated in ROS modulation and their potential applications in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal A, Verma P, Goyal P (2010) Chemomodulatory effects of Aegle marmelos against DMBA-induced skin tumorigenesis in Swiss albino mice. Asian Pac J Cancer Prev 11(5):1311–1314

    PubMed  Google Scholar 

  • Akhouri V, Kumari M, Kumar A (2020) Therapeutic effect of Aegle marmelos fruit extract against DMBA induced breast cancer in rats. Sci Rep 10(1):1–12

    Article  CAS  Google Scholar 

  • Alafnan A, Hussain T, Rizvi SMD, Moin A, Alamri A (2021) Prostate apoptotic induction and NFκB suppression by Dammarolic acid: mechanistic insight into onco-therapeutic action of an Aglycone Asiaticoside. Curr Issues Mol Biol 43(2):932–940

    Article  PubMed  CAS  Google Scholar 

  • Ansari JA, Ahmad MK, Khan AR, Fatima N, Khan HJ, Rastogi N et al (2016) Anticancer and antioxidant activity of Zingiber officinale Roscoe rhizome. Indian J Exp Biol 54:767

    PubMed  Google Scholar 

  • Baliga MS, Thilakchand KR, Rai MP, Rao S, Venkatesh P (2013) Aegle marmelos (L.) Correa (Bael) and its phytochemicals in the treatment and prevention of cancer. Integr Cancer Ther 12(3):187–196

    Article  CAS  PubMed  Google Scholar 

  • Beg AA, Finco T, Nantermet PV, Baldwin A Jr (1993) Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. Mol Cell Biol 13(6):3301–3310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan DW, Liu VW, Tsao GS, Yao K-M, Furukawa T, Chan KK et al (2008) Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 29(9):1742–1750

    Article  CAS  PubMed  Google Scholar 

  • Chang H-W, Li R-N, Wang H-R, Liu J-R, Tang J-Y, Huang H-W et al (2017) Withaferin A induces oxidative stress-mediated apoptosis and DNA damage in oral cancer cells. Front Physiol 8:634

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi MJ, Park EJ, Min KJ, Park J-W, Kwon TK (2011) Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells. Toxicol In Vitro 25(3):692–698

    Article  CAS  PubMed  Google Scholar 

  • Cullen JJ, Weydert C, Hinkhouse MM, Ritchie J, Domann FE, Spitz D et al (2003) The role of manganese superoxide dismutase in the growth of pancreatic adenocarcinoma. Cancer Res 63(6):1297–1303

    CAS  PubMed  Google Scholar 

  • de Lima RMT, Dos Reis AC, de Menezes AAPM, Santos JVO, Filho JWGO, Ferreira JRO et al (2018) Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: a comprehensive review. Phytother Res 32(10):1885–1907

    Article  PubMed  CAS  Google Scholar 

  • Dorcheh SN, Rahgozar S, Talei D (2021) 6-Shogaol induces apoptosis in acute lymphoblastic leukaemia cells by targeting p53 signalling pathway and generation of reactive oxygen species. J Cell Mol Med 25(13):6148

    Google Scholar 

  • Grogan PT, Sleder KD, Samadi AK, Zhang H, Timmermann BN, Cohen MS (2013) Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Investig New Drugs 31(3):545–557

    Article  CAS  Google Scholar 

  • Hahm E-R, Moura MB, Kelley EE, Van Houten B, Shiva S, Singh SV (2011) Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS One 6(8):e23354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han A-R, Lee S, Han S, Lee YJ, Kim J-B, Seo EK et al (2020) Triterpenoids from the leaves of Centella asiatica inhibit ionizing radiation-induced migration and invasion of human lung cancer cells. Evid Based Complement Alternat Med 2020

    Google Scholar 

  • Hao J, Pei Y, Ji G, Li W, Feng S, Qiu S (2011) Autophagy is induced by 3β-O-succinyl-lupeol (LD9-4) in A549 cells via up-regulation of Beclin 1 and down-regulation mTOR pathway. Eur J Pharmacol 670(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Huang J, Ma Y, Chen W, Fan Q, Sun X et al (2018) Asiatic acid inhibits proliferation, migration and induces apoptosis by regulating Pdcd4 via the PI3K/Akt/mTOR/p70S6K signaling pathway in human colon carcinoma cells. Oncol Lett 15(6):8223–8230

    PubMed  PubMed Central  Google Scholar 

  • He Y, Peng X, Zheng L, Tang Y, Li J, Huang X (2021) Asiaticoside inhibits epithelial-mesenchymal transition and stem cell-like properties of pancreatic cancer PANC-1 cells by blocking the activation of p65 and p38MAPK. J Gastrointest Oncol 12(1):196

    Article  PubMed  PubMed Central  Google Scholar 

  • Hettiarachchi H, Gunathilake K (2020) Bioactives and bioactivity of selected underutilized fruits, vegetables and legumes grown in Sri Lanka: a review. J Med Plants 8(6):34–44

    Article  Google Scholar 

  • Hsu JH-M, Chang PM-H, Cheng T-S, Kuo Y-L, Wu AT-H, Tran T-H et al (2019) Identification of withaferin A as a potential candidate for anti-cancer therapy in non-small cell lung cancer. Cancers 11(7):1003

    Article  CAS  PubMed Central  Google Scholar 

  • Jagetia GC, Venkatesh P, Baliga MS (2005) Aegle marmelos (L.) CORREA inhibits the proliferation of transplanted Ehrlich ascites carcinoma in mice. Biol Pharm Bull 28(1):58–64

    Article  CAS  PubMed  Google Scholar 

  • Jalili-Nik M, Sadeghi MM, Mohtashami E, Mollazadeh H, Afshari AR, Sahebkar A (2020) Zerumbone promotes cytotoxicity in human malignant glioblastoma cells through reactive oxygen species (ROS) generation. Oxidative Med Cell Longev 2020

    Google Scholar 

  • Katram N, Garlapati PK, Yadavalli C, Methal RE, Rajappa SBG, Raghavan AK (2021) Aegle marmelos extract rich in marmelosin exacted ameliorative effect against chromium-induced oxidative stress and apoptosis through regulation of Gadd45 in HepG2 cell line. J Food Biochem 45(4):e13704

    Article  CAS  PubMed  Google Scholar 

  • Kim S-H, Singh SV (2014) Mammary cancer chemoprevention by withaferin A is accompanied by in vivo suppression of self-renewal of cancer stem cells. Cancer Prev Res 7(7):738–747

    Article  CAS  Google Scholar 

  • Kim G, Kim TH, Hwang EH, Chang KT, Hong JJ, Park JH (2017) Withaferin A inhibits the proliferation of gastric cancer cells by inducing G2/M cell cycle arrest and apoptosis. Oncol Lett 14(1):416–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulprachakarn K, Ounjaijean S, Srichairatanakool S, Kanjanapothi D (2020) Evaluation of cytotoxicity and antioxidant potential of bael leaf (Aegle marmelos) on human hepatocellular carcinoma cell line. Phcog Res 12(3):267–271

    Google Scholar 

  • Kumar PY, Parimalam M, Kumar D, Joseph E, David D, Vinolia R (2021) Screening of phytochemicals, Invitro assessment of antioxidant, anti-inflammatory, Tlc profiling and anticancer activity of Aegle Marmelos (L.) leaves. Ann Romanian Society Cell Biol 18061–71–71

    Google Scholar 

  • Labianca R, Beretta G, Clerici M, Fraschini P, Luporini G (1982) Cardiac toxicity of 5-fluorouracil: a study on 1083 patients. Tumori J 68(6):505–510

    Article  CAS  Google Scholar 

  • Lander HM, Hajjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S et al (1997) A molecular redox switch on p21ras: structural basis for the nitric oxide-p21ras interaction. J Biol Chem 272(7):4323–4326

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Lim I-H, Sung E-G, Kim J-Y, Song I-H, Park YK et al (2013) Withaferin A inhibits matrix metalloproteinase-9 activity by suppressing the Akt signaling pathway. Oncol Rep 30(2):933–938

    Article  CAS  PubMed  Google Scholar 

  • Li N, Karin M (1999) Is NF-κB the sensor of oxidative stress? FASEB J 13(10):1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhu F, Jiang J, Sun C, Wang X, Shen M et al (2015) Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3K/AKT pathway in human pancreatic cancer cells. Cancer Lett 357(1):219–230

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chen K, Huang J, Chu D, Tian M, Huang K et al (2021) Asiatic acid induces endoplasmic reticulum stress and activates the Grp78/IRE1α/JNK and Calpain pathways to inhibit tongue cancer growth. Front Pharmacol 12:1251

    Google Scholar 

  • Liang T, He Y, Chang Y, Liu X (2019) 6-shogaol a active component from ginger inhibits cell proliferation and induces apoptosis through inhibition of STAT-3 translocation in ovarian cancer cell lines (A2780). Biotechnol Bioprocess Eng 24(3):560–567

    Article  CAS  Google Scholar 

  • Liu Y-T, Chuang Y-C, Lo Y-S, Lin C-C, Hsi Y-T, Hsieh M-J et al (2020) Asiatic acid, extracted from Centella asiatica and induces apoptosis pathway through the phosphorylation p38 mitogen-activated protein kinase in cisplatin-resistant nasopharyngeal carcinoma cells. Biomol Ther 10(2):184

    CAS  Google Scholar 

  • Ma Y, Wen J, Wang J, Wang C, Zhang Y, Zhao L et al (2020a) Asiaticoside antagonizes proliferation and chemotherapeutic drug resistance in hepatocellular carcinoma (HCC) cells. Med Sci Monit 26:e924435–e924431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma R-H, Ni Z-J, Zhang F, Zhang Y-Y, Liu M-M, Thakur K et al (2020b) 6-Shogaol mediated ROS production and apoptosis via endoplasmic reticulum and mitochondrial pathways in human endometrial carcinoma Ishikawa cells. J Funct Foods 74:104178

    Article  CAS  Google Scholar 

  • Mandal C, Dutta A, Mallick A, Chandra S, Misra L, Sangwan RS et al (2008) Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 13(12):1450–1464

    Article  CAS  PubMed  Google Scholar 

  • Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E (2014) PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 46(6):372–383

    Article  CAS  PubMed  Google Scholar 

  • Mayola E, Gallerne C, Degli Esposti D, Martel C, Pervaiz S, Larue L et al (2011) Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis 16(10):1014–1027

    Article  CAS  PubMed  Google Scholar 

  • Mehta V, Chander H, Munshi A (2021) Mechanisms of anti-tumor activity of Withania somnifera (Ashwagandha). Nutr Cancer 73(6):914–926

    Article  CAS  PubMed  Google Scholar 

  • Moolsap F, Tanasawet S, Tantisira MH, Hutamekalin P, Tipmanee V, Sukketsiri W (2020) Standardized extract of Centella asiatica ECa 233 inhibits lipopolysaccharide-induced cytokine release in skin keratinocytes by suppressing ERK1/2 pathways. Asian Pac J Trop Biomed 10(6):273

    Article  CAS  Google Scholar 

  • Morgan MJ, Liu Z-g (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21(1):103–115

    Article  CAS  PubMed  Google Scholar 

  • Munagala R, Kausar H, Munjal C, Gupta RC (2011) Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis 32(11):1697–1705

    Article  CAS  PubMed  Google Scholar 

  • Nagalingam A, Kuppusamy P, Singh SV, Sharma D, Saxena NK (2014) Mechanistic elucidation of the antitumor properties of withaferin A in breast cancer. Cancer Res 74(9):2617–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najafi Dorcheh S, Rahgozar S, Talei D (2021) 6-Shogaol induces apoptosis in acute lymphoblastic leukaemia cells by targeting p53 signalling pathway and generation of reactive oxygen species. J Cell Mol Med 25(13):6148

    Google Scholar 

  • Okoh VO, Felty Q, Parkash J, Poppiti R, Roy D (2013) Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells. PLoS One 8(2):e54206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei X-D, He Z-L, Yao H-L, Xiao J-S, Li L, Gu J-Z et al (2021) 6-Shogaol from ginger shows anti-tumor effect in cervical carcinoma via PI3K/Akt/mTOR pathway. Eur J Nutr 60:1–13

    Google Scholar 

  • Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta (BBA)-Mol Cell Res 1813(9):1619–1633

    Article  CAS  Google Scholar 

  • Prasad S, Nigam N, Kalra N, Shukla Y (2008) Regulation of signaling pathways involved in lupeol induced inhibition of proliferation and induction of apoptosis in human prostate cancer cells. Mol Carcinog 47(12):916–924

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Madan E, Nigam N, Roy P, George J, Shukla Y (2009) Induction of apoptosis by lupeol in human epidermoid carcinoma A431 cells through regulation of mitochondrial, Akt/PKB and NF-kappaB signaling pathways. Cancer Biol Ther 8(17):1632–1639

    Article  CAS  PubMed  Google Scholar 

  • Qian S, Fang H, Zheng L, Liu M (2021) Zingerone suppresses cell proliferation via inducing cellular apoptosis and inhibition of the PI3K/AKT/mTOR signaling pathway in human prostate cancer PC-3 cells. J Biochem Mol Toxicol 35(1):e22611

    Article  CAS  PubMed  Google Scholar 

  • Rahman S, Parvin R (2014) Therapeutic potential of Aegle marmelos (L.)-An overview. Asia Pac J Trop Dis 4(1):71–77

    Article  CAS  Google Scholar 

  • Reddy KB, Glaros S (2007) Inhibition of the MAP kinase activity suppresses estrogen-induced breast tumor growth both in vitro and in vivo. Int J Oncol 30(4):971–975

    CAS  PubMed  Google Scholar 

  • Ren L, Cao Q-X, Zhai F-R, Yang S-Q, Zhang H-X (2016) Asiatic acid exerts anticancer potential in human ovarian cancer cells via suppression of PI3K/Akt/mTOR signalling. Pharm Biol 54(11):2377–2382

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Ramos R, Lopez-Carrillo L, Rios-Perez AD, De Vizcaya-Ruíz A, Cebrian ME (2009) Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-κB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res/Genet Toxicol Environ Mutagen 674(1–2):109–115

    Article  CAS  Google Scholar 

  • Rygiel TP, Mertens AE, Strumane K, van der Kammen R, Collard JG (2008) The Rac activator Tiam1 prevents keratinocyte apoptosis by controlling ROS-mediated ERK phosphorylation. J Cell Sci 121(8):1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Sabri A, Byron KL, Samarel AM, Bell J, Lucchesi PA (1998) Hydrogen peroxide activates mitogen-activated protein kinases and Na+-H+ exchange in neonatal rat cardiac myocytes. Circ Res 82(10):1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Senthilnathan P, Padmavathi R, Banu SM, Sakthisekaran D (2006) Enhancement of antitumor effect of paclitaxel in combination with immunomodulatory Withania somnifera on benzo (a) pyrene induced experimental lung cancer. Chem Biol Interact 159(3):180–185

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Kataria H, Kaul SC, Ishii T, Kaur G, Wadhwa R (2009) Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: combinational approach for enhanced differentiation. Cancer Sci 100(9):1740–1747

    Article  CAS  PubMed  Google Scholar 

  • Son Y, Cheong Y-K, Kim N-H, Chung H-T, Kang DG, Pae H-O (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct 2011

    Google Scholar 

  • Steelman L, Abrams S, Whelan J, Bertrand F, Ludwig D, Bäsecke J et al (2008) Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 22(4):686–707

    Article  CAS  PubMed  Google Scholar 

  • Sun GY, Li R, Cui J, Hannink M, Gu Z, Fritsche KL et al (2016) Withania somnifera and its withanolides attenuate oxidative and inflammatory responses and up-regulate antioxidant responses in BV-2 microglial cells. NeuroMolecular Med 18(3):241–252

    Article  CAS  PubMed  Google Scholar 

  • Turrini E, Calcabrini C, Sestili P, Catanzaro E, De Gianni E, Diaz AR et al (2016) Withania somnifera induces cytotoxic and cytostatic effects on human T leukemia cells. Toxins 8(5):147

    Article  PubMed Central  CAS  Google Scholar 

  • Usatyuk PV, Fu P, Mohan V, Epshtein Y, Jacobson JR, Gomez-Cambronero J et al (2014) Role of c-Met/phosphatidylinositol 3-kinase (PI3k)/Akt signaling in hepatocyte growth factor (HGF)-mediated lamellipodia formation, reactive oxygen species (ROS) generation, and motility of lung endothelial cells. J Biol Chem 289(19):13476–13491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Huang X, Cang H, Gao F, Yamamoto T, Osaki T et al (2007) The endogenous reactive oxygen species promote NF-κ B activation by targeting on activation of NF-κ B-inducing kinase in oral squamous carcinoma cells. Free Radic Res 41(9):963–971

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Shao L, Pan C, Ye J, Ding Z, Wu J et al (2019a) Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial–mesenchymal transition. Stem Cell Res Ther 10(1):1–16

    Article  CAS  Google Scholar 

  • Wang Y, Wang S, Song R, Cai J, Xu J, Tang X et al (2019b) Ginger polysaccharides induced cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Int J Biol Macromol 123:81–90

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Geng J, Guo W, Gao J, Zhu X (2017) Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharm Sin B 7(1):65–72

    Article  PubMed  Google Scholar 

  • Xia Y, Shen S, Verma IM (2014) NF-κB, an active player in human cancers. Cancer Immunol Res 2(9):823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yingchun L, Huihan W, Rong Z, Guojun Z, Ying Y, Zhuogang L (2019) Antitumor activity of asiaticoside against multiple myeloma drug-resistant cancer cells is mediated by autophagy induction, activation of effector caspases, and inhibition of cell migration, invasion, and STAT-3 signaling pathway. Med Sci Monit 25:1355

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Munshi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vasudeva, K., Chaturvedi, P., Khan, R., Sahu, P., Munshi, A. (2022). Targeting Redox Homeostasis of Tumor Cells by Therapeutic Compounds in Cancer. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_271-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_271-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics