Skip to main content

Central Nervous System Nanotechnology

  • Living reference work entry
  • First Online:
Nanomedicine

Part of the book series: Micro/Nano Technologies ((MNT))

  • 69 Accesses

Abstract

Modulating neural activity in central nervous system (CNS) has been regarded as a timeless goal for neuroscientists to uncover the intricate organization of CNS and the treatment of brain disorders. The seamless integration of nanomaterials with genetics has allowed researchers to develop promising neuromodulation nanotechnology. Nanomaterials can effectively transduce external physical inputs, e.g., light, electric, magnetic, and ultrasonic fields, into stimulus outputs, e.g., optical, electrical, thermal, and mechanical signals, for optogenetic, magnetogenetic, sonogenetic, chemogenetic, and electric neuromodulation. These nanotechnologies can control the excitation of a neuronal subset by activating the ion channels and thus modulating the firing pattern of an entire neural circuit within the CNS with unprecedented spatiotemporal resolution. CNS neuromodulation nanotechnologies have shed light on many unanswered questions in neuroscience, revaluated certain principles that were believed to be understood, and aided in the development of new therapeutics to restore brain function. In this chapter, we will introduce some key considerations in nanomaterial design and implementation, and we will highlight the recent breakthroughs in the utilization of nanomaterials in CNS neuromodulation. Moreover, we will also discuss the current challenges and future directions in the field of CNS nanotechnologies. We believe that developing noninvasive and wireless CNS nanotechnologies with high spatial and temporal precision would not only lead to a deeper understanding on CNS function, but also provide new approaches to manage its dysfunction for future clinical translation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Temel Y, Jahanshahi A (2015) Treating brain disorders with neuromodulation. Science 347:1418–1419

    Article  Google Scholar 

  2. Airan R (2017) Neuromodulation with nanoparticles. Science 357(6350):465

    Article  Google Scholar 

  3. Parameswaran R, Carvalho-de-Souza JL, Jiang Y, Burke MJ, Zimmerman JF, Koehler K, Phillips AW, Yi J, Adams EJ, Bezanilla F, Tian B (2018) Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat Nanotechnol 13(3):260–266

    Article  Google Scholar 

  4. Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG (2017) Next-generation probes, particles, and proteins for neural interfacing. Sci Adv 3(6):e1601649

    Article  Google Scholar 

  5. Andrews AM, Weiss PS (2012) Nano in the brain: nano-neuroscience. ACS Nano 6(19):8463–8464

    Article  Google Scholar 

  6. Das S, Carnicer-Lombarte A, Fawcett JW, Bora U (2016) Bio-inspired nano tools for neuroscience. Prog Neurobiol 142:1–22

    Article  Google Scholar 

  7. Wang Y, Zhu H, Yang H, Argall AD, Luan L, Xie C, Guo L (2018) Nano functional neural interfaces. Nano Res 11(10):5065–5106

    Article  Google Scholar 

  8. Alivisatos AP, Andrews AM, Boyden ES, Chun M, Church GM, Deisseroth K, Donoghue JP, Fraser SE, Lippincott-Schwartz J, Looger LL, Masmanidis S, McEuen PL, Nurmikko AV, Park H, Peterka DS, Reid C, Roukes ML, Scherer A, Schnitzer M, Sejnowski TJ, Shepard KL, Tsao D, Turrigiano G, Weiss PS, Xu C, Yuste R, Zhuang X (2013) Nanotools for neuroscience and brain activity mapping. ACS Nano 7(3):1850–1866

    Article  Google Scholar 

  9. Kumar A, Tan A, Wong J, Spagnoli JC, Lam J, Blevins BD, Natasha G, Thorne L, Ashkan K, Xie J, Liu H (2017) Nanotechnology for neuroscience: promising approaches for diagnostics, therapeutics and brain activity mapping. Adv Funct Mater 27:1700489

    Article  Google Scholar 

  10. Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Freidman JM (2012) Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336:604–608

    Article  Google Scholar 

  11. Stanley SA, Kelly L, Latcha KN, Schmidt SF, Yu X, Nectow AR, Sauer J, Dyke JP, Dordick JS, Friedman JM (2016) Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature 531(7596):647–650

    Article  Google Scholar 

  12. Stanley SA, Sauer J, Kane RS, Dordick JS, Friedman JM (2015) Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat Med 21(1):92–98

    Article  Google Scholar 

  13. Munshi R, Qadri SM, Zhang Q, Castellanos Rubio I, del Pino P, Pralle A (2017) Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. elife 6:e27069

    Article  Google Scholar 

  14. Boer WDAM, Hirtz JJ, Capretti A, Gregorkiewicz T, Izquierdo-Serra M, Han S, Dupre C, Shymkiv Y, Yuste R (2018) Neuronal photoactivation through second-harmonic near-infrared absorption by gold nanoparticles. Light Sci Appl 7:100

    Article  Google Scholar 

  15. Nelidova D, Morikawa RK, Cowan CS, Raics Z, Goldblum D, Scholl HPN, Szikra T, Szabo A, Hillier D, Roska B (2020) Restoring light sensitivity using tunable near-infrared sensors. Science 368(6495):1108

    Article  Google Scholar 

  16. Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, Huang AJY, Hashimotodani Y, Kano M, Iwasaki H, Parajuli LK, Okabe S, Teh DBL, All AH, Tsutsui-Kimura I, Tanaka KF, Liu X, McHugh TJ (2018) Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359:679–684

    Article  Google Scholar 

  17. Li W, Luo R, Lin X, Jadhav AD, ZXhang Z, Yan L, Chan CY, Chen X, He J, Chen CH, Shi P (2015) Remote modulation of neural activities via near-infrared triggered release of biomolecules. Biomaterials 65:76–85

    Google Scholar 

  18. Jiang Y, Parameswaran R, Li X, Carvalho-de-Souza JL, Gao X, Meng L, Bezanilla F, Shepherd GMG, Tian B (2019) Nongenetic optical neuromodulation with silicon-based materials. Nat Protoc 14(5):1339–1376

    Article  Google Scholar 

  19. Kang M, Jung S, Zhang H, Kang T, Kang H, Yoo Y, Hong J, Ahn J, Kwak J, Jeon D, Kotov NA, Kim B (2014) Subcellular neural probes from single crystal gold nanowires. ACS Nano 8(8):8182–8189

    Article  Google Scholar 

  20. Zhao Y, Larimer P, Pressler RT, Strowbridge BW, Burda C (2009) Wireless activation of neurons in brain slices using nanostructured semiconductor photoelectrodes. Angew Chem 121(13):2443–2446

    Article  Google Scholar 

  21. Airan RD, Meyer RA, Ellens NP, Rhodes KR, Farahani K, Pomper MG, Kadam SD, Green JJ (2017) Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett 17(2):652–659

    Article  Google Scholar 

  22. Zhao D, Feng P-J, Liu J-H, Dong M, Shen X-Q, Chen Y-X, Shen Q-D (2020) Electromagnetized-nanoparticle-modulated neural plasticity and recovery of degenerative dopaminergic neurons in the Mid-Brain. Adv Mater 32(43):2003800

    Article  Google Scholar 

  23. Rao S, Chen R, LaRocca AA, Christiansen MG, Senko AW, Shi CH, Chiang PH, Varnavides G, Xue J, Zhou Y, Park S, Ding R, Moon J, Feng G, Anikeeva P (2019) Remotely controlled chemomagnetic modulation of targeted neural circuits. Nat Nanotechnol 14(10):967–973

    Article  Google Scholar 

  24. Park J, Jin K, Sahasrabudhe A, Chiang PH, Maalouf JH, Koehler F, Rosenfeld D, Rao S, Tanaka T, Khudiyev T, Schiffer ZJ, Fink Y, Yizhar O, Manthiram K, Anikeeva P (2020) In situ electrochemical generation of nitric oxide for neuronal modulation. Nat Nanotechnol 15(8):690–697

    Article  Google Scholar 

  25. Acarón Ledesma H, Li X, Carvalho-de-Souza JL, Wei W, Bezanilla F, Tian B (2019) An atlas of nano-enabled neural interfaces. Nat Nanotechnol 14(7):645–657

    Article  Google Scholar 

  26. Luan S, Williams I, Nikolic K, Constandinou TG (2014) Neuromodulation present and emerging methods. Front Neuroeng 7:27

    Article  Google Scholar 

  27. Efros AL, Delehanty JB, Huston AL, Medintz IL, Barbic M, Harris TD (2018) Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat Nanotechnol 13(4):278–288

    Article  Google Scholar 

  28. Sahel J-A, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel JN, Esposti SD, Delaux A, de Saint Aubert J-B, de Montleau C, Gutman E, Audo I, Duebel J, Picaud S, Dalkara D, Blouin L, Taiel M, Roska B (2021) Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. https://doi.org/10.1038/s41591-021-01351-4

  29. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  Google Scholar 

  30. Yi Z, Luo Z, Qin X, Chen Q, Liu X (2020) Lanthanide-activated nanoparticles: a toolbox for bioimaging, therapeutics, and neuromodulation. Acc Chem Res 53(11):2692–2704

    Article  Google Scholar 

  31. Kim CK, Adhikari A, Deisseroth K (2017) Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 18(4):222–235

    Article  Google Scholar 

  32. Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18(9):1213–1225

    Article  Google Scholar 

  33. All AH, Zeng X, Teh DBL, Yi Z, Prasad A, Ishizuka T, Thakor N, Hiromu Y, Liu X (2019) Expanding the toolbox of upconversion nanoparticles for in vivo optogenetics and neuromodulation. Adv Mater 31(41):e1803474

    Article  Google Scholar 

  34. Pliss A, Ohulchanskyy TY, Chen G, Damasco J, Bass CE, Prasad PN (2017) Subcellular optogenetics enacted by targeted nanotransformers of near-infrared light. ACS Photonics 4(4):806–814

    Article  Google Scholar 

  35. Kim H, Park Y, Beack S, Han S, Jung D, Cha HJ, Kwon W, Hahn SK (2017) Dual-color-emitting carbon nanodots for multicolor bioimaging and optogenetic control of ion channels. Adv Sci 4(11):1700325

    Article  Google Scholar 

  36. Yu N, Huang L, Zhou Y, Xue T, Chen Z, Han G (2019) Near-infrared-light activatable nanoparticles for deep-tissue-penetrating wireless optogenetics. Adv Healthc Mater 8(6):e1801132

    Article  Google Scholar 

  37. Li J, Duan H, Pu K (2019) Nanotransducers for near-infrared photoregulation in biomedicine. Adv Mater 31(33):1901607

    Article  Google Scholar 

  38. Carvalho-de-Souza JL, Treger JS, Dang B, Kent SBH, Pepperberg DR, Bezanilla F (2015) Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86:207–217

    Article  Google Scholar 

  39. Zimmerman JF, Tian B (2018) Nongenetic optical methods for measuring and modulating neuronal response. ACS Nano 12:4086–4095

    Article  Google Scholar 

  40. Wang Y, Lin X, Chen X, Chen X, Xu Z, Zhang W, Liao Q, Duan X, Wang X, Liu M, Wang F, He J, Shi P (2017) Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Biomaterials 142:136–148

    Article  Google Scholar 

  41. Day ES, Zhang L, Thompson PA, Kaffes CC, Gaber MW, Blaney SM, West JL (2012) Vascular-targeted photothermal therapy of an orthotopic murine glioma model. Nanomedicine 7(8):1133–1148

    Article  Google Scholar 

  42. Yoo S, Hong S, Choi Y, Park J-H, Nam Y (2014) Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano 8(8):8040–8049

    Article  Google Scholar 

  43. Wu C, Shen Y, Chen M, Wang K, Li Y, Cheng Y (2018) Recent advances in magnetic-nanomaterial-based mechanotransduction for cell fate regulation. Adv Mater 30(17):e1705673

    Article  Google Scholar 

  44. Nimpf S, Keays DA (2017) Is magnetogenetics the new optogenetics? EMBO J 36(12):1643–1646

    Article  Google Scholar 

  45. Tay A, Carlo DD (2017) Remote neural stimulation using magnetic nanoparticles. Curr Med Chem 24:537–548

    Article  Google Scholar 

  46. Funderburk SC, Krashes MJ (2016) Neuroendocrinology: electromagnetic control of neural activity – prospective physics for physicians. Nat Rev Endocrinol 12(6):316–317

    Article  Google Scholar 

  47. Christiansen MG, Senko AW, Anikeeva P (2019) Magnetic strategies for nervous system control. Annu Rev Neurosci 42:271–293

    Article  Google Scholar 

  48. Tay A, Kunze A, Murray C, Di Carlo D (2016) Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano 10(2):2331–2341

    Article  Google Scholar 

  49. Szallasi A, Cortright DN, Blum CA, Eid SR (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6(5):357–372

    Article  Google Scholar 

  50. Hurtado-Zavala JI, Ramachandran B, Ahmed S, Halder R, Bolleyer C, Awasthi A, Stahlberg MA, Wagener RJ, Anderson K, Drenan RM, Lester HA, Miwa JM, Staiger JF, Fischer A, Dean C (2017) TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus. Nat Commun 8(1):15878

    Article  Google Scholar 

  51. Luo L, Wang Y, Li B, Xu L, Kamau PM, Zheng J, Yang F, Yang S, Lai R (2019) Molecular basis for heat desensitization of TRPV1 ion channels. Nat Commun 10(1):2134

    Article  Google Scholar 

  52. Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V (2014) TRPV1: a potential drug target for treating various diseases. Cell 3:517–545

    Article  Google Scholar 

  53. Gao W, Sun Y, Cai M, Zhao Y, Cao W, Liu Z, Cui G, Tang B (2018) Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis. Nat Commun 9(1):231

    Article  Google Scholar 

  54. Wheeler MA, Smith CJ, Ottolini M, Barker BS, Purohit AM, Grippo RM, Gaykema RP, Spano AJ, Beenhakker MP, Kucenas S, Patel MK, Deppmann CD, Güler AD (2016) Genetically targeted magnetic control of the nervous system. Nat Neurosci 19(5):756–761

    Article  Google Scholar 

  55. Sun W, Chi S, Li Y, Ling S, Tan Y, Xu Y, Jiang F, Li J, Liu C, Zhong G, Cao D, Jin X, Zhao D, Gao X, Liu Z, Xiao B, Li Y (2019) The mechanosensitive Piezo1 channel is required for bone formation. elife 8:e47454

    Article  Google Scholar 

  56. Qin S, Yin H, Yang C, Dou Y, Liu Z, Zhang P, Yu H, Huang Y, Feng J, Hao J, Hao J, Deng L, Yan X, Dong X, Zhao Z, Jiang T, Wang HW, Luo SJ, Xie C (2016) A magnetic protein biocompass. Nat Mater 15(2):217–226

    Article  Google Scholar 

  57. Long X, Ye J, Zhao D, Zhang SJ (2015) Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor. Sci Bull 60:2107–2119

    Article  Google Scholar 

  58. Roet M, Hescham SA, Jahanshahi A, Rutten BPF, Anikeeva PO, Temel Y (2019) Progress in neuromodulation of the brain: a role for magnetic nanoparticles? Prog Neurobiol 177:1–14

    Article  Google Scholar 

  59. Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knuchel R, Kiessling F, Lammers T (2019) Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325

    Article  Google Scholar 

  60. Lee J, Shin W, Lim Y, Kim J, Kim WR, Kim H, Lee J, Cheon J (2021) Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat Mater. https://doi.org/10.1038/s41563-020-00896-y

  61. Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A (2010) Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 5(8):602–606

    Article  Google Scholar 

  62. Chen B, Romero G, Christiansen MG, Mohr A, Anikeeva P (2015) Wireless magnetothermal deep brain stimulation. Science 347(6229):1477–1480

    Article  Google Scholar 

  63. Munshi R, Qadri SM, Pralle A (2018) Transient magnetothermal neuronal silencing using the chloride channel anoctamin 1 (TMEM16A). Front Neurosci 12:560

    Article  Google Scholar 

  64. Rosenfeld D, Senko AW, Moon J, Yick I, Varnavides G, Gregurec D, Koehler F, Chiang PH, Christiansen MG, Maeng LY, Widge AS, Anikeeva P (2020) Transgene-free remote magnetothermal regulation of adrenal hormones. Sci Adv 6:eaaz3734

    Article  Google Scholar 

  65. Hughes S, McBain S, Dobson J, El Haj AJ (2008) Selective activation of mechanosensitive ion channels using magnetic particles. J R Soc Interface 5(25):855–863

    Article  Google Scholar 

  66. Gregurec D, Senko AW, Chuvilin A, Reddy PD, Sankararaman A, Rosenfeld D, Chiang PH, Garcia F, Tafel I, Varnavides G, Ciocan E, Anikeeva P (2020) Magnetic vortex nanodiscs enable remote magnetomechanical neural stimulation. ACS Nano 14(7):8036–8045

    Article  Google Scholar 

  67. Xu FX, Zhou L, Wang XT, Jia F, Ma KY, Wang N, Lin L, Xu FQ, Shen Y (2020) Magneto is ineffective in controlling electrical properties of cerebellar Purkinje cells. Nat Neurosci 23:1041–1043

    Article  Google Scholar 

  68. Meister M (2016) Physical limits to magnetogenetics. elife 5:e19569

    Article  Google Scholar 

  69. Pang K, You H, Chen Y, Chu P, Hu M, Shen J, Guo W, Xie C, Lu B (2017) MagR alone is insufficient to confer cellular calcium responses to magnetic stimulation. Front Neural Circuits 11:11

    Article  Google Scholar 

  70. Lewis PM, Thomson RH, Rosenfeld JV, Fitzgerald PB (2016) Brain neuromodulation techniques: a review. Neuroscientist 22(4):406–421

    Article  Google Scholar 

  71. Houweling AR, Doron G, Voigt BC, Herfst LJ, Brecht M (2010) Nanostimulation manipulation of single neuron activity by juxtacellular current injection. J Neurophysiol 103:1696–1704

    Article  Google Scholar 

  72. Wirdatmadja SA, Barros MT, Koucheryavy Y, Jornet JM, Balasubramaniam S (2017) Wireless optogenetic nanonetworks for brain stimulation: device model and charging protocols. IEEE Trans Nanobioscience 16(8):859–872

    Article  Google Scholar 

  73. Liu Y, Liu J, Chen S, Lei T, Kim Y, Niu S, Wang H, Wang X, Foudeh AM, Tok JBH, Bao Z (2019) Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng 3(1):58–68

    Article  Google Scholar 

  74. Hwang G-T, Kim Y, Lee J-H, Oh S, Jeong CK, Park DY, Ryu J, Kwon H, Lee S-G, Joung B, Kim D, Lee KJ (2015) Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ Sci 8(9):2677–2684

    Article  Google Scholar 

  75. Dong M, Wang X, Chen X-Z, Mushtaq F, Deng S, Zhu C, Torlakcik H, Terzopoulou A, Qin X-H, Xiao X, Puigmartí-Luis J, Choi H, Pêgo AP, Shen Q-D, Nelson BJ, Pané S (2020) 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells. Adv Funct Mater 30(17):1910323

    Article  Google Scholar 

  76. Wang W, Li J, Liu H, Ge S (2021) Advancing versatile ferroelectric materials toward biomedical applications. Adv Sci 8(1):2003074

    Article  Google Scholar 

  77. Patil AC, Thakor NV (2016) Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording. Med Biol Eng Comput 54(1):23–44

    Article  Google Scholar 

  78. Qian Y, Yuan W-E, Cheng Y, Yang Y, Qu X, Fan C (2019) Concentrically integrative bioassembly of a three-dimensional black phosphorus nanoscaffold for restoring neurogenesis, angiogenesis, and immune homeostasis. Nano Lett 19(12):8990–9001

    Article  Google Scholar 

  79. Wang K, Fishman HA, Dai H, Harris JS (2006) Neural stimulation with a carbon nanotube microelectrode array. Nano Lett 6(9):2043–2048

    Article  Google Scholar 

  80. Kang M, Jung S, Zhang H, Kang T, Kang H, Yoo Y, Hong J, Ahn J, Kwak J, Jeon D, Kotov NA, Kim B (2015) Subcellular neural probes from single-crystal gold nanowires. ACS Nano 8(8):8182–8189

    Article  Google Scholar 

  81. Jiang Y, Li X, Liu B, Yi J, Fang Y, Shi F, Gao X, Sudzilovsky E, Parameswaran R, Koehler K, Nair V, Yue J, Guo K, Fang Y, Tsai HM, Freyermuth G, Wong RCS, Kao CM, Chen CT, Nicholls AW, Wu X, Shepherd GMG, Tian B (2018) Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat Biomed Eng 2(7):508–521

    Article  Google Scholar 

  82. Guduru R, Liang P, Hong J, Rodzinski A, Hadjikhani A, Horstmyer J, Levister E, Khizroev S (2015) Magnetoelectric ‘spin’ on stimulating the brain. Nanomedicine 10(13):2051–2061

    Article  Google Scholar 

  83. Tufail Y, Yoshihiro A, Pati S, Li MM, Tyler WJ (2011) Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat Protoc 6(9):1453–1470

    Article  Google Scholar 

  84. Sato T, Shapiro MG, Tsao DY (2018) Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism. Neuron 98(5):1031–1041

    Article  Google Scholar 

  85. Rojas C, Tedesco M, Massobrio P, Marino A, Ciofani G, Martinoia S, Raiteri R (2018) Acoustic stimulation can induce a selective neural network response mediated by piezoelectric nanoparticles. J Neural Eng 15(3):036016

    Article  Google Scholar 

  86. Huang Y-S, Fan C-H, Hsu N, Chiu N-H, Wu C-Y, Chang C-Y, Wu B-H, Hong S-R, Chang Y-C, Yan-Tang Wu A, Guo V, Chiang Y-C, Hsu W-C, Chen L, Pin-Kuang Lai C, Yeh C-K, Lin Y-C (2020) Sonogenetic modulation of cellular activities using an engineered auditory-sensing protein. Nano Lett 20(2):1089–1100

    Article  Google Scholar 

  87. Wang S, Meng W, Ren Z, Li B, Zhu T, Chen H, Wang Z, He B, Zhao D, Jiang H (2020) Ultrasonic neuromodulation and sonogenetics: a new era for neural modulation. Front Physiol 11:787

    Article  Google Scholar 

  88. Ibsen S, Tong A, Schutt C, Esener S, Chalasani SH (2015) Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun 6(1):8264

    Article  Google Scholar 

  89. Ye J, Tang S, Meng L, Li X, Wen X, Chen S, Niu L, Li X, Qiu W, Hu H, Jiang M, Shang S, Shu Q, Zheng H, Duan S, Li Y (2018) Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL. Nano Lett 18(7):4148–4155

    Article  Google Scholar 

  90. Marino A, Arai S, Hou Y, Sinibaldi E, Pellegrino M, Chang Y, Mazzolai B, Mattoli V, Suzuki M, Ciofani G (2015) Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano 9(7):7678–7689

    Article  Google Scholar 

  91. He T, Wang H, Wang T, Pang G, Zhang Y, Zhang C, Yu P, Chang J (2021) Sonogenetic nanosystem activated mechanosensitive ion channel to induce cell apoptosis for cancer immunotherapy. Chem Eng J 407:127173

    Article  Google Scholar 

  92. Kreuter J (2014) Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 71:2–14

    Article  Google Scholar 

  93. Celia C, Cosco D, Paolino D, Fresta M (2011) Nanoparticulate devices for brain drug delivery. Med Res Rev 31(5):716–756

    Article  Google Scholar 

  94. Romero G, Christiansen MG, Stocche Barbosa L, Garcia F, Anikeeva P (2016) Localized excitation of neural activity via rapid magnetothermal drug release. Adv Funct Mater 26(35):6471–6478

    Article  Google Scholar 

  95. Cui Y, Li X, Zeljic K, Shan S, Qiu Z, Wang Z (2019) Effect of PEGylated magnetic PLGA-PEI nanoparticles on primary hippocampal neurons: reduced nanoneurotoxicity and enhanced transfection efficiency with magnetofection. ACS Appl Mater Interfaces 11(41):38190–38204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiming Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fan, H. (2022). Central Nervous System Nanotechnology. In: Gu, N. (eds) Nanomedicine. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-9374-7_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9374-7_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9374-7

  • Online ISBN: 978-981-13-9374-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics