Skip to main content

OMICS for Tumor Biomarker Research

  • Living reference work entry
  • First Online:
Biomarkers in Cancer

Abstract

OMICS generally refers to a study of some gene expression products, either direct, such as RNA and proteins, or indirect, such as metabolites, and is usually based on genome information. Main sections of OMICS sciences include transcriptomics, proteomics, and metabolomics, powerful research instruments capable of high-throughput detection of biomolecules differentially expressed between tumor and non-tumor samples, including excised tissues or biopsies, blood plasma, saliva, and urine. Consequently, thousands of species of RNAs, proteins, and metabolites were suggested as candidate tumor biomarkers alone or as constituents of multiplex signatures. Despite many difficulties encountered by OMICS panels with an intended use in population screening programs, some of the multiplex panels already have found their applications in the field of theranostics. If the patient is already diagnosed with a certain cancer, RNA or protein biomarker signatures may help to select a specific therapy or to predict the probability of a relapse. A number of clinically relevant, validated, and approved signatures of RNA and protein analytes successfully emerged from OMICS pipelines. It is important to remember that an implementation of these clinical tests took the safety of reliable laboratory techniques, such as polymerase chain reaction and immunoassay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AUC:

Area Under the Curve

DNA:

Deoxyribonucleic Acid

ENCODE:

Encyclopedia of DNA Elements

ESI:

Electrospray Ionization

FDA:

US Food and Drug Administration

HPLC:

High-Performance Liquid Chromatography

IVDMIA:

In Vitro Diagnostic Multivariate Index Assay

LC-MS/MS:

Liquid Chromatography-Tandem Mass Spectrometry

LDT:

Laboratory-Developed Tests

LOOCV:

Leave-One-Out Cross Validation

MALDI-TOF:

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

MRM:

Multiple Reaction Monitoring

MS:

Mass Spectrometry

MS/MS:

Tandem Mass Spectrometry

m/z:

Molecular Mass/Charge Ratio

mRNA:

Matrix Ribonucleic Acid

miRNA:

Micro-Ribonucleic Acid

NMR:

Nuclear Magnetic Resonance

PCR:

Polymerase Chain Reaction

PPV:

Positive Predictive Value

qRT-PCR:

Quantitative Real-Time Polymerase Chain Reaction

RNA:

Ribonucleic Acid

RNAseq:

High-Throughput Sequencing of Ribonucleic Acid

ROC:

Receiver Operator Characteristics

SELDI:

Surface-Enhanced Laser Desorption/Ionization

SRM:

Selected Reaction Monitoring

References

  • Aboud OA, Weiss RH. New opportunities from the cancer metabolome. Clin Chem. 2013;59(1):138–46.

    Article  PubMed  Google Scholar 

  • Aebersold R. A mass spectrometric journey into protein and proteome research. J Am Soc Mass Spectrom. 2003;14(7):685–95.

    Article  CAS  PubMed  Google Scholar 

  • Aebersold R, Burlingame AL, Bradshaw RA. Western blots vs. SRM assays: time to turn the tables? Mol Cell Proteomics. 2013;12(9):2381–2.

    Google Scholar 

  • Alonzo TA, Pepe MS. Development and evaluation of classifiers. Methods Mol Biol. 2007;404:89–116.

    Article  CAS  PubMed  Google Scholar 

  • Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci U S A. 2002;99(10):6562–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amin ARMR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol. 2009;27(16):2712–25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics. 2006;5(4):573–88.

    Article  CAS  PubMed  Google Scholar 

  • Archakov A, Zgoda V, Kopylov A, et al. Chromosome-centric approach to overcoming bottlenecks in the Human Proteome Project. Expert Rev Proteomics. 2012;9(6):667–76.

    Article  CAS  PubMed  Google Scholar 

  • Augenlicht LH, Taylor J, Anderson L, Lipkin M. Patterns of gene expression that characterize the colonic mucosa in patients at genetic risk for colonic cancer. Proc Natl Acad Sci U S A. 1991;88(8):3286–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Azim HA, Michiels S, Zagouri F, et al. Utility of prognostic genomic tests in breast cancer practice: the IMPAKT 2012 Working Group Consensus Statement. Ann Oncol. 2013;24(3):647–54.

    Article  PubMed  Google Scholar 

  • Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.

    Article  Google Scholar 

  • Bignell GR, Greenman CD, Davies H, et al. Signatures of mutation and selection in the cancer genome. Nature. 2010;463(7283):893–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bristow RE, Smith A, Zhang Z, et al. Ovarian malignancy risk stratification of the adnexal mass using a multivariate index assay. Gynecol Oncol. 2013;128(2):252–9.

    Article  PubMed  Google Scholar 

  • Cancer Genome Atlas Research Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    Article  Google Scholar 

  • Carlson JJ, Roth JA. The impact of the Oncotype Dx breast cancer assay in clinical practice: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013;141(1):13–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cesareni G, Ceol A, Gavrila C, Palazzi LM, Persico M, Schneider MV. Comparative interactomics. FEBS Lett. 2005;579(8):1828–33.

    Article  CAS  PubMed  Google Scholar 

  • Chalkley R. Instrumentation for LC-MS/MS in proteomics. Methods Mol Biol. 2010;658:47–60.

    Article  CAS  PubMed  Google Scholar 

  • Cooperberg M, Simko J, Falzarano S, et al. Development and validation of the biopsy-based genomic prostate score (GPS) as a predictor of high grade or extracapsular prostate cancer to improve patient selection for active surveillance. American Urological Association Meeting, San Diego, CA, USA. 2013; Abstract 2131.

    Google Scholar 

  • Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2010;465(7300):966.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diamandis EP. Point: proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? Clin Chem. 2003;49(8):1272–5.

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Wendl MC, Koboldt DC, Mardis ER. Analysis of next-generation genomic data in cancer: accomplishments and challenges. Hum Mol Genet. 2010;19(R2):R188–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dowsett M, Cuzick J, Wale C, et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Сlin Oncol. 2010;28(11):1829–34.

    Article  Google Scholar 

  • Edgell T, Martin-Roussety G, Barker G, et al. Phase II biomarker trial of a multimarker diagnostic for ovarian cancer. J Cancer Res Clin Oncol. 2010;136(7):1079–88.

    Google Scholar 

  • Espina V, Mehta AI, Winters ME, et al. Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics. 2003;3(11):2091–100.

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Oh DS, Wessels L, et al. Concordance among gene-expression-based predictors for breast cancer. N Engl J Med. 2006;355(6):560–9.

    Article  CAS  PubMed  Google Scholar 

  • Ferracin M, Veronese A, Negrini M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn. 2010;10(3):297–308.

    Article  CAS  PubMed  Google Scholar 

  • Fortin T, Salvador A, Charrier JP, et al. Clinical quantitation of prostate-specific antigen biomarker in the low nanogram/milliliter range by conventional bore liquid chromatography-tandem mass spectrometry (multiple reaction monitoring) coupling and correlation with ELISA tests. Mol Cell Proteomics. 2009;8(5):1006–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fung ET. A recipe for proteomics diagnostic test development: the OVA1 test, from biomarker discovery to FDA clearance. Clin Chem. 2010;56(2):327–9.

    Article  CAS  PubMed  Google Scholar 

  • Gerszten RE, Accurso F, Bernard GR, et al. Challenges in translating plasma proteomics from bench to bedside: update from the NHLBI Clinical Proteomics Programs. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L16–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamacher M, Stephan C, Meyer HE, Eisenacher M. Data handling and processing in proteomics. Expert Rev Proteomics. 2009;6(3):217–9.

    Article  PubMed  Google Scholar 

  • Hawkins RD, Hon GC, Ren B. Next-generation genomics: an integrative approach. Nat Rev Genet. 2010;11(7):476–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu J, Coombes KR, Morris JS, Baggerly KA. The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales. Brief Funct Genomic Proteomic. 2005;3(4):322–31.

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Tan Y, Yin P, et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res. 2013;73(16):4992–5002.

    Article  CAS  PubMed  Google Scholar 

  • Hughes C, Ma B, Lajoie GA. De novo sequencing methods in proteomics. Methods Mol Biol. 2010;604:105–21.

    Article  CAS  PubMed  Google Scholar 

  • Karpova MA, Moshkovskii SA, Toropygin IY, Archakov AI. Cancer-specific MALDI-TOF profiles of blood serum and plasma: biological meaning and perspectives. J Proteomics. 2010;73(3):537–51.

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Visintin I, Alvero AB, Mor G. Development and validation of a protein-based signature for the detection of ovarian cancer. Clin Lab Med. 2009;29(1):47–55.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kirschenlohr HL, Griffin JL, Clarke SC, et al. Proton NMR analysis of plasma is a weak predictor of coronary artery disease. Nat Med. 2006;12(6):705–10.

    Article  CAS  PubMed  Google Scholar 

  • Kobel M, Kalloger SE, Boyd N, et al. Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Med. 2008;5(12):e232.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kraemer S, Vaught JD, Bock C, et al. From SOMAmer-based biomarker discovery to diagnostic and clinical applications: a SOMAmer-based, streamlined multiplex proteomic assay. PLoS One. 2011;6(10):e26332.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuhn E, Whiteaker JR, Mani DR, et al. Interlaboratory evaluation of automated, multiplexed peptide immunoaffinity enrichment coupled to multiple reaction monitoring mass spectrometry for quantifying proteins in plasma. Mol Cell Proteomics. 2012;11(6):M111.013854.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lal A, Panos R, Marjanovic M, et al. A gene expression profile test for the differential diagnosis of ovarian versus endometrial cancers. Oncotarget. 2012;3(2):212–23.

    PubMed Central  PubMed  Google Scholar 

  • Lee J-R, Magee DM, Gaster RS, LaBaer J, Wang SX. Emerging protein array technologies for proteomics. Expert Rev Proteomics. 2013;10(1):65–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XJ, Hayward C, Fong PY, et al. A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci Transl Med. 2013;5(207):207ra142.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin C-Y, Chin C-H, Wu H-H, Chen S-H, Ho C-W, Ko M-T. Hubba: hub objects analyzer – a framework of interactome hubs identification for network biology. Nucleic Acids Res. 2008;36(Web Server issue):W438–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu BC-S, Dijohnson DA, O’Rourke DJ. Antibody profiling with protein antigen microarrays in early stage cancer. Expert Opin Med Diagn. 2012;6(3):187–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lokhov PG, Dashtiev MI, Moshkovskii SA, Archakov AI. Metabolite profiling of blood plasma of patients with prostate cancer. Metabolomics. 2010;6(1):156–63.

    Article  CAS  Google Scholar 

  • Lokhov PG, Trifonova OP, Maslov DL, Archakov AI. Blood plasma metabolites and the risk of developing lung cancer in Russia. Eur J Cancer Prev. 2013;22(4):335–41.

    Article  CAS  PubMed  Google Scholar 

  • Longo C, Patanarut A, George T, et al. Core-shell hydrogel particles harvest, concentrate and preserve labile low abundance biomarkers. PLoS One. 2009;4(3):e4763.

    Article  PubMed Central  PubMed  Google Scholar 

  • Luo Y, Wang L, Wang J. Developing proteomics-based biomarkers for colorectal neoplasms for clinical practice: opportunities and challenges. Proteomics Clin Appl. 2013;7(1–2):30–41.

    Article  CAS  PubMed  Google Scholar 

  • Mann M, Kulak NA, Nagaraj N, Cox J. The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell. 2013;49(4):583–90.

    Article  CAS  PubMed  Google Scholar 

  • McLerran D, Grizzle WE, Feng Z, et al. SELDI-TOF MS whole serum proteomic profiling with IMAC surface does not reliably detect prostate cancer. Clin Chem. 2008;54(1):53–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moshkovskii S, Vlasova M, Pyatnitskiy M, et al. Acute phase serum amyloid A in ovarian cancer as an important component of proteome diagnostic profiling. Proteomics Clin Appl. 2007;1(1):107–17.

    Article  CAS  PubMed  Google Scholar 

  • Mutz K-O, Heilkenbrinker A, Lönne M, Walter J-G, Stahl F. Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol. 2013;24(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  • Ntzani EE, Ioannidis JPA. Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet. 2003;362(9394):1439–44.

    Article  CAS  PubMed  Google Scholar 

  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250(10):4007–21.

    PubMed Central  PubMed  Google Scholar 

  • Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359(9306):572–7.

    Article  CAS  PubMed  Google Scholar 

  • Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9(6):555–66.

    Article  CAS  PubMed  Google Scholar 

  • Polanski M, Anderson NL. A list of candidate cancer biomarkers for targeted proteomics. Biomark Insights. 2007;1:1–48.

    PubMed Central  PubMed  Google Scholar 

  • Pusztai L, Ayers M, Stec J, Hortobágyi GN. Clinical application of cDNA microarrays in oncology. Oncologist. 2003;8(3):252–8.

    Article  CAS  PubMed  Google Scholar 

  • Pyatnitskiy M, Karpova M, Moshkovskii S, Lisitsa A, Archakov A. Clustering mass spectral peaks increases recognition accuracy and stability of SVM-based feature selection. J Proteomics Bioinform. 2010;3:048–54.

    Article  CAS  Google Scholar 

  • Regnier FE, Skates SJ, Mesri M, et al. Protein-based multiplex assays: mock presubmissions to the US Food and Drug Administration. Clin Chem. 2010;56(2):165–71.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Tezak Z, Mesri M, et al. Analytical validation of protein-based multiplex assays: a workshop report by the NCI-FDA interagency oncology task force on molecular diagnostics. Clin Chem. 2010;56(2):237–43.

    Article  CAS  PubMed  Google Scholar 

  • Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507–17.

    Article  CAS  PubMed  Google Scholar 

  • Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491(7424):364–73.

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simmons AR, Baggerly K, Bast RC. The emerging role of HE4 in the evaluation of epithelial ovarian and endometrial carcinomas. Oncology. 2013;27(6):548–56.

    PubMed Central  PubMed  Google Scholar 

  • Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457(7231):910–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stephens PJ, McBride DJ, Lin ML, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature. 2009;462(7276):1005–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Subramanian J, Simon R. Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J Natl Cancer Inst. 2010;102(7):464–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sung J, Wang Y, Chandrasekaran S, Witten DM, Price ND. Molecular signatures from omics data: from chaos to consensus. Biotechnol J. 2012;7(8):946–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Franceschini A, Kuhn M, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011;39(Database issue):D561–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tolson J, Bogumil R, Brunst E, et al. Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients. Lab Investig. 2004;84(7):845–56.

    Article  CAS  PubMed  Google Scholar 

  • Tran JC, Zamdborg L, Ahlf DR, et al. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature. 2011;480(7376):254–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trifonova O, Lokhov P, Archakov A. Postgenomics diagnostics: metabolomics approaches to human blood profiling. OMICS. 2013;17(11):550–9.

    Google Scholar 

  • Ulrich H, Wrenger C. Disease-specific biomarker discovery by aptamers. Cytometry A. 2009;75(9):727–33.

    Article  PubMed  Google Scholar 

  • Van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.

    Article  Google Scholar 

  • Venet D, Dumont JE, Detours V. Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Comput Biol. 2011;7(10):e1002240.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venook AP, Niedzwiecki D, Lopatin M, et al. Biologic determinants of tumor recurrence in stage II colon cancer: validation study of the 12-gene recurrence score in cancer and leukemia group B (CALGB) 9581. J Clin Oncol. 2013;31(14):1775–81.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vizcaíno JA, Foster JM, Martens L. Proteomics data repositories: providing a safe haven for your data and acting as a springboard for further research. J Proteomics. 2010;73(11):2136–46.

    Article  PubMed Central  PubMed  Google Scholar 

  • Waldron L, Ogino S, Hoshida Y, et al. Expression profiling of archival tumors for long-term health studies. Clin Cancer Res. 2012;18(22):6136–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Washburn MP, Wolters D, Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19(3):242–7.

    Article  CAS  PubMed  Google Scholar 

  • Weiland M, Gao X-H, Zhou L, Mi Q-S. Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol. 2012;9(6):850–9.

    Article  CAS  PubMed  Google Scholar 

  • Wilkins MR, Pasquali C, Appel RD, et al. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology. 1996;14(1):61–5.

    Article  CAS  PubMed  Google Scholar 

  • Williams Z, Ben-Dov IZ, Elias R, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci U S A. 2013;110(11):4255–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winkler H. Verbreitung und Ursache der Parthenogenesis im Pflanzen – und Tierreiche. Jena: Verlag Fischer; 1920. p. 165.

    Book  Google Scholar 

  • Yurkovetsky Z, Skates S, Lomakin A, et al. Development of a multimarker assay for early detection of ovarian cancer. J Clin Oncol. 2010;28(13):2159–66.

    Google Scholar 

  • Zhang Z, Bast RC, Yu Y, et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res. 2004;64(16):5882–90.

    Article  CAS  PubMed  Google Scholar 

  • Zimmer JS, Monroe ME, Qian WJ, et al. Advances in proteomics data analysis and display using an accurate mass and time tag approach. Mass Spectrom Rev. 2006;25(3):450–82.

    Google Scholar 

  • Zubarev RA. The challenge of the proteome dynamic range and its implications for in-depth proteomics. Proteomics. 2013;13(5):723–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Human Proteome Program of the Russian Academy of Medical Sciences, by the grant # 12-04-33109 of the Russian Fund for Basic Research and by the contracts # 14.512.11.0090 (27th June 2013) under the call # 2013-1.2-14-512-0042 and # 8273 (27th August 2012) under the call # 2012-1.1-12-000-2008-067 of the Ministry of Education and Science of Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Moshkovskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Moshkovskii, S., Pyatnitsky, M., Lokhov, P., Baranova, A. (2014). OMICS for Tumor Biomarker Research. In: Preedy, V., Patel, V. (eds) Biomarkers in Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7744-6_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7744-6_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7744-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics