Skip to main content

Aminoaciduria and Glycosuria in Children

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Pediatric Nephrology

Abstract

Hereditary tubular transport disorders that lead to abnormal aminoaciduria and glycosuria are uncommon but are of major biologic importance. Some of these diseases can be associated with significant morbidity. In the past two decades, remarkable progress has been made in our understanding of the molecular pathogenesis of hereditary aminoaciduria and glycosuria. Molecular genetics and molecular biology studies have led to the identification of numerous mutations resulting in aminoaciduria and glycosuria, have provided important insight into the defective molecular mechanisms underlying these disorders, and have greatly increased our understanding of the physiology of renal tubular reclamation of amino acids and glucose.

This chapter summarizes the general characteristics of proximal tubular transport of amino acids and glucose, discusses the specificity and classification of amino acid and glucose transport systems, reviews the molecular pathophysiology and genetic aspects of hereditary aminoaciduria and glycosuria, describes the clinical features of these tubulopathies, and summarizes their therapy. Special emphasis is given to cystinuria, lysinuric protein intolerance, Hartnup disease, iminoglycinuria, dicarboxylic aminoaciduria, familial renal glycosuria, and Fanconi-Bickel syndrome.

Further molecular studies of inherited proximal tubular transport disorders resulting in aminoaciduria and glycosuria may shed more light on the molecular pathophysiology of these diseases and may significantly improve our understanding of the mechanisms underlying renal handling of amino acids and glucose in health and disease. The identification of the molecular defects in these inherited tubulopathies may provide a basis for future design of targeted therapeutic interventions for molecular therapy of these complex disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Zelikovic I, Chesney RW. Sodium-coupled amino acid transport in renal tubule. Kidney Int. 1989;36:351–9.

    Article  CAS  PubMed  Google Scholar 

  2. Bröer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev. 2008;88:249–80.

    Article  PubMed  CAS  Google Scholar 

  3. Camargo SMR, Makrides V, Kleta R, et al. Kidney transport of amino acids and oligopeptides, and aminoacidurias. In: Alpern RJ, Moe OW, Caplan M, editors. Seldin and Giebisch’s the Kidney: Physiology and pathophysiology. 5th ed: Elsevier Inc; 2013. p. 2405–23.

    Google Scholar 

  4. Roigaard –Petersen H, Jacobsen C, Iqbal Sheikh M. H+ −L-proline cotransport by vesicles from pars convoluta of rabbit proximal tubule. Am. J. Physiol (Renal Fluid Electrolyte Physiol) 1987; 253: F15–F20.

    Google Scholar 

  5. Rajendran VM, Barry JA, Kleinman JG, et al. Proton gradient –dependent transport of glycine in rabbit renal brush –border membrane vesicles. J Biol Chem. 1987;262:14974–7.

    Article  CAS  PubMed  Google Scholar 

  6. Verrey F, Ristic Z, Romeo E, et al. Novel renal amino acid transporters. Annu Rev Physiol. 2005;67:557–72.

    Article  CAS  PubMed  Google Scholar 

  7. Schafer JA, Barfuss DW. Membrane mechanisms for transepithelial amino acid absorption and secretion. Am J Phys. 1980;238:F335–46.

    CAS  Google Scholar 

  8. Zelikovic I, Chesney RW. Development of renal amino acid transport systems. Semin Nephrol. 1989;9:49–55.

    CAS  PubMed  Google Scholar 

  9. Camargo SMR, Bockenhauer D, Kleta R. Aminoacidurias: clinical and molecular aspects. Kidney Int. 2008;73:918–25.

    Article  CAS  PubMed  Google Scholar 

  10. Moe OW, Wright SH, Placin M. Renal handling of organic solutes. In: Taal MW, Chertow GM, Marsden PA, editors. Brenner and Rector’s the kidney. 9th ed: Elsevier Inc; 2012. p. 252–92.

    Google Scholar 

  11. Barfuss DW, Schafer JA. Active amino acid absorption by proximal convoluted and proximal straight tubules. Am J Phys. 1979;236:F149–62.

    CAS  Google Scholar 

  12. Zelikovic I, Budreau A. Cl and membrane potential dependence of amino acid transport across the rat renal brush border membrane. Mol Genet Metab. 1999;67:236–47.

    Article  CAS  PubMed  Google Scholar 

  13. Zelikovic I, Stejskal-Lorenz E, Lohstroh P, et al. Anion dependence of taurine transport by rat renal brush border membrane vesicles. Am J Phys. 1989;256:F646–55.

    CAS  Google Scholar 

  14. Scalera V, Corcellia A, Frassanito A, et al. Chloride dependence of the sodium-dependent glycine transport in pig kidney cortex brush-border membrane vesicles. Biochim Biophys Acta. 1987;903:1–10.

    Article  CAS  PubMed  Google Scholar 

  15. Chesney RW, Zelikovic I, Budreau A, et al. Chloride and membrane potential dependence of sodium ion-proline symport. J Am Soc Nephrol. 1991;2:885–93.

    Article  CAS  PubMed  Google Scholar 

  16. Scriver CR, Tenenhouse HS. Mendelian phenotypes as “probes” of renal transport systems for amino acids and phosphate. In: Windhager EE, editor. Handbook of physiology: renal physiology. New York: Oxford University Press; 1992. p. 1977–2016.

    Google Scholar 

  17. Christensen HN. Role of amino acid transport and counter transport in nutrition and metabolism. Physiol Rev. 1990;70:43–77.

    Article  CAS  PubMed  Google Scholar 

  18. Palacin M, Estevez R, Bertran J, et al. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998;78:969–1054.

    Article  CAS  PubMed  Google Scholar 

  19. Bröer S. Adaptation of plasma membrane amino acid transport mechanisms to physiological demands. Pflügers Arch. 2002;444:457–66.

    Article  PubMed  CAS  Google Scholar 

  20. Rabito CA. Sodium cotransport processes in renal epithelial cell lines. Miner Electrol Metab. 1986;12:32–41.

    CAS  Google Scholar 

  21. Hediger MA, Coady MJ, Ikeda TS, et al. Expression cloning and cDNA sequencing of the Na+/glucose cotransporter. Nature. 1987;330:379–81.

    Article  CAS  PubMed  Google Scholar 

  22. Hediger MA, Clemencon B, Burrier RE, et al. The ABCs of membrane transporters in health and disease (SLC series). Mol Aspects Med. 2013;34:95–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Makrides V, Camargo SMR, Verrey F. Transport of amino acids in the kidney. Compr Physiol. 2014;4:367–403.

    Article  PubMed  Google Scholar 

  24. Bröer S. Apical transporters for neutral amino acids: physiology and pathophysiology. Physiology (Bethesda). 2008;23:95–103.

    Google Scholar 

  25. Bröer S, Palacin M. The role of amino acid transporters in inherited and acquired diseases. Biochem J. 2011;436:193–211.

    Article  PubMed  CAS  Google Scholar 

  26. Chillarön J, Font-Llitjös M, Fort J, et al. Pathophysiology and treatment of cystinuria. Nat Rev Nephrol. 2010;6:424–34.

    Article  PubMed  CAS  Google Scholar 

  27. Claes DJ, Jackson E. Cystinuria: mechanism and management. Ped Nephrol. 2012;27:2031–8.

    Article  Google Scholar 

  28. Milliner DS. Cystinuria. Endocrinol Metab Clin N Am. 1990;19:889–907.

    Article  CAS  Google Scholar 

  29. Foreman JW, Hwang SM, Segal L. Transport interactions of cystine and dibasic amino acids in isolated rat renal tubules. Metabolism. 1980;29:53–61.

    Article  CAS  PubMed  Google Scholar 

  30. Weinberger A, Sperling O, Rabinovitz M, et al. High frequency of cystinuria among Jews of Libyan origin. Hum Hered. 1974;24:568–72.

    Article  CAS  PubMed  Google Scholar 

  31. Rosenberg LE, Downing S, Durant JL, et al. Cystinuria: biochemical evidence of three genetically distinct diseases. J Clin Invest. 1966;45:365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goodyer PR, Clow C, Reade T, et al. Prospective analysis and classification of patients with cystinuria identified in a newborn screening program. J Pediatr. 1993;122:568–72.

    Article  CAS  PubMed  Google Scholar 

  33. Dello Strologo L, Pras E, Pontesilli C, et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol. 2002;13:2547–53.

    Article  Google Scholar 

  34. Font-Llitjós M, Jiménez-Vidal M, Bisceglia L, et al. New insights into cystinuria: 40 new mutations, genotype–phenotype correlation, and digenic inheritance causing partial phenotype. J Med Genet. 2005;42:58–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Palacín M, Nunes V, Font-Llitjós M, et al. The genetics of heteromeric amino acid transporters. Physiology (Bethesda). 2005;20:112–24.

    Google Scholar 

  36. Palacin M, Kanai Y. The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflugers Arch. 2004;447:490–4.

    Article  CAS  PubMed  Google Scholar 

  37. Fotiadis D, Kanai Y, Palacin M. The SLC3 and SLC7 families of amino acid transporters. Mol Asp Med. 2013;34:139–58.

    Article  CAS  Google Scholar 

  38. Chillaron J, Roca R, Valencia A, et al. Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am J Phys. 2001;281:F995–F1018.

    CAS  Google Scholar 

  39. Pras E, Arber N, Aksentijevich I, et al. Localization of a gene causing cystinuria to chromosome 2p. Nat Genet. 1994;6:415–9.

    Article  CAS  PubMed  Google Scholar 

  40. Calonge MJ, Gasparini P, Chillaron J, et al. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet. 1994;6:420–5.

    Article  CAS  PubMed  Google Scholar 

  41. Tokhmafshan F, Dickinson K, Akpa MM, et al. A no-nonsense approach to hereditary kidney disease. Pediatr Nephrol. 2020;35:2031–42.

    Article  PubMed  Google Scholar 

  42. Gaildrat P, Lebbah S, Tebani A, et al. Clinical and molecular characterization of cystinuria in a French cohort: relevance of assessing large-scale rearrangements and splicing variants. Mol Genet Genomic Med. 2017;5:373–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Palacin M, Bertran J, Zorzano A. Heteromeric amino acid transporters explain inherited aminoacidurias. Curr Opin Nephrol Hypert. 2000;9:547–53.

    Article  CAS  Google Scholar 

  44. Chillaron J, Estevez R, Samarzija I, et al. An intracellular trafficking defect in type I cystinuria rBAT mutants M467T and M467K. J Biol Chem. 1997;272:9543–9.

    Article  CAS  PubMed  Google Scholar 

  45. Zelikovic I. Molecular pathophysiology of tubular transport disorders. Pediatr Nephrol. 2001;16:919–35.

    Article  CAS  PubMed  Google Scholar 

  46. Palacin M, Borsani G, Sebastio G. The molecular bases of cystinuria and lysinuric protein intolerance. Curr Opin Genet Dev. 2001;11:328–35.

    Article  CAS  PubMed  Google Scholar 

  47. Wartenfeld R, Golomb E, Katz G, et al. Molecular analysis of cystinuria in Libyan Jews: exclusion of the SLC3A1 gene and mapping of a new locus on 19q. Am J Hum Genet. 1997;60:617–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bisceglia L, Calonge MJ, Totaro A, et al. Localization, by linkage analysis, of the cystinuria type III gene to chromosome 19q13.1. Am J Hum Genet. 1997;60:611–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Feliubadalo L, Font M, Purroy J, et al. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat Genet. 1999;23:52–7.

    Article  CAS  PubMed  Google Scholar 

  50. Font M, Feliubadalo L, Estivill X, et al. Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-type I cystinuria. Hum Mol Genet. 2001;10:305–16.

    Article  CAS  PubMed  Google Scholar 

  51. Jaeken J, Martens K, Francois I, et al. Deletion of PREPL, a gene encoding a putative serine oligopeptidase, in patients with hypotonia-cystinuria syndrome. Am J Hum Genet. 2006;78:38–51.

    Article  CAS  PubMed  Google Scholar 

  52. Martens K, Heulens I, Meulemans S, et al. Global distribution of the most prevalent deletions causing hypotonia – cystinuria syndrome. Eur J Hum Genet. 2007;15:1029–33.

    Article  CAS  PubMed  Google Scholar 

  53. Servais A, Thomas K, Dello Strogolo L, et al. Cystinuria: clinical practice recommendation. Kidney Int. 2020;S0085–2538(20):30829–2.

    Google Scholar 

  54. Rhodes HL, Yarram-Smith L, Rice SJ, et al. Clinical and genetic analysis of patients with cystinuria in the United Kingdom. Clin J Am Soc Nephrol. 2015;10:1235–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Prot-Bertoye C, Lebbah S, Daudon M, et al. CKD and its risk factors among patients with cystinuria. Clin J Am Soc Nephrol. 2015;10:842–51.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Krizek V, Erben J, Lazne M, et al. Disappearance of cystinuria after kidney transplantation. Br J Urol. 1983;55:575.

    CAS  PubMed  Google Scholar 

  57. Jaeger P, Portmann L, Saunders A, et al. Anticystinuric effects of glutamine and of dietary sodium restriction. N Engl J Med. 1986;315:1120–3.

    Article  CAS  PubMed  Google Scholar 

  58. Goldfarb DS, Coe FL, Asplin JR. Urinary cystine excretion and capacity in patients with cystinuria. Kidney Int. 2006;69:1041–7.

    Article  CAS  PubMed  Google Scholar 

  59. Prot-Bertoye C, Lebbah S, Daudon M, et al. Adverse events associated with currently used medical treatments for cystinuria and treatment goals: results from a series of 442 patients in France. BJU Int. 2019;124:849–61.

    Article  CAS  PubMed  Google Scholar 

  60. Coulthard M, Richardson J, Fleetwood A. Captopril is not clinically useful in reducing the cystine load in cystinuria or cystinosis. Pediatr Nephrol. 1991;5:98.

    Article  CAS  PubMed  Google Scholar 

  61. Maiorino RM, Bruce DC, Aposhian HV. Determination and metabolism of dithiol chelating agents. VI. Isolation and identification of the mixed disulfides of meso-2,3-dimercaptosuccinic acid with L-cysteine in human urine. Toxicol Appl Pharmacol. 1989;97:338–49.

    Article  CAS  PubMed  Google Scholar 

  62. Simell O. Lysinuric protein intolerance and other cationic aminoacidurias. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 2001. p. 4933–56.

    Google Scholar 

  63. Sperandeo MP, Andria G, Sebastio G. Lysinuric protein intolerance: update and extended mutation analysis of the SLC7A7 gene. Hum Mutat. 2008;29:14–21.

    Article  CAS  PubMed  Google Scholar 

  64. de Baulny HO, Schiff M, Dionisi-Vici C. Lysinuric protein intolerance (LPI): a multi organ disease by far more complex than a classic urea cycle disorder. Mol Genet Metab. 2012;106:12–7.

    Article  CAS  Google Scholar 

  65. Mauhin W, Habarou F, Gobin S, et al. Update on lysinuric protein intolerance, a multi- faceted disease retrospective cohort analysis from birth to adulthood. Orphanet J Rare Dis. 2017;12(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Valimahamed-Mitha S, Berteloot L, Ducoin H, et al. Lung involvement in children with lysinuric protein intolerance. J Inherit Metab Dis. 2015;38:257–63.

    Article  CAS  PubMed  Google Scholar 

  67. Desjeux JF, Rajantie J, Simell O, et al. Lysine fluxes across the jejunal epithelium in lysinuric protein intolerance. J Clin Invest. 1980;65:1382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rajantie J, Simell O, Perheentupa J. Lysinuric protein intolerance. Basolateral transport defect in renal tubuli. J Clin Invest. 1981;67:1078–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Palacín M, Bertran J, Chillarón J, et al. Lysinuric protein intolerance: mechanisms of pathophysiology. Mol Gen Metab. 2004;81:S27–37.

    Article  CAS  Google Scholar 

  70. Sabastio G, Sperandeo MP, Andria G. Lysinuric protein intolerance: reviewing concepts on a multisystem disease. Am J Med Genet C Semin Med Genet. 2011;157:54–62.

    Article  CAS  Google Scholar 

  71. Simell O. Diamino acid transport into granulocytes and liver slices of patients with lysinuric protein intolerance. Pediatr Res. 1975;9:504–8.

    Article  CAS  PubMed  Google Scholar 

  72. Smith DW, Scriver CR, Tenenhouse HS, et al. Lysinuric protein intolerance mutation is expressed in the plasma membrane of cultured skin fibroblasts. Proc Natl Acad Sci U S A. 1987;84:7711–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tanner LM, Näntö-Salonen K, Niinikoski H, et al. Nephropathy advancing to end-stage renal disease: a novel complication of lysinuric protein intolerance. J Pediatr. 2007;150:631–4.

    Article  PubMed  Google Scholar 

  74. Bröer S. Lysinuric protein intolerance: one gene, many problems. Am J Physiol Cell Physiol. 2007;293:C540–1.

    Article  PubMed  CAS  Google Scholar 

  75. Lauteala T, Sistonen P, Savontaus ML, et al. Lysinuric protein intolerance (LPI) gene maps to the long arm of chromosome 14. Am J Hum Genet. 1997;60:1479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lauteala T, Mykkanen J, Sperandeo MP, et al. Genetic homogeneity of lysinuric protein intolerance. Eur J Hum Genet. 1998;6:612–5.

    Article  CAS  PubMed  Google Scholar 

  77. Torrents D, Estevez R, Pineda M, et al. Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J Biol Chem. 1998;273:32437–45.

    Article  CAS  PubMed  Google Scholar 

  78. Estevez R, Camps M, Rojas AM, et al. The amino acid transport system y+L/4F2hc is a heteromultimeric complex. FASEB J. 1998;12:1319–29.

    Article  CAS  PubMed  Google Scholar 

  79. Borsani G, Bassi MT, Sperandeo MP, et al. SLC7A7, encoding a putative permease-related protein, is mutated in patients with lysinuric protein intolerance. Nat Genet. 1999;21:297–301.

    Article  CAS  PubMed  Google Scholar 

  80. Torrents D, Mykkanen J, Pineda M, et al. Identification of SLC7A7, encoding y+LAT−1, as the lysinuric protein intolerance gene. Nat Genet. 1999;21:293–6.

    Article  CAS  PubMed  Google Scholar 

  81. Font- Llitjö M, Rodriguez-Santiago B, Espino M, et al. Novel SLC7A7 large rearrangements in lysinuric protein intolerance patients involving the same AluY repeat. Eur J Hum Genet. 2009;17:71–9.

    Article  CAS  Google Scholar 

  82. Mykkanen J, Torrents D, Pineda M, et al. Functional analysis of novel mutations in y+LAT-1 amino acid transporter gene causing lysinuric protein intolerance (LPI). Hum Mol Genet. 2000;9:431–8.

    Article  CAS  PubMed  Google Scholar 

  83. Feral CC, Nishiya N, Fenczik CA, et al. CD98hc (SLC3A2) mediates integrin signaling. Proc Natl Acad Sci U S A. 2005;102:355–60.

    Article  CAS  PubMed  Google Scholar 

  84. Tsumura H, Suzuki N, Saito H, et al. The targeted disruption of the CD98 gene results in embryonic lethality. Biochem Biophys Res Commun. 2003;308:847–51.

    Article  CAS  PubMed  Google Scholar 

  85. Whelan DT, Scriver CR. Hyperdibasic aminoaciduria: an inherited disorder of amino acid transport. Pediatr Res. 1968;2:525–34.

    Article  CAS  PubMed  Google Scholar 

  86. Kihara H, Valente M, Porter MT, et al. Hyperdibasic aminoaciduria in a mentally retarded homozygote with a peculiar response to phenothiazines. Pediatrics. 1978;51:223–9.

    Article  Google Scholar 

  87. Omura K, Yamanaka N, Higami S, et al. Lysine malabsorption syndrome: a new type of transport defect. Pediatrics. 1976;57:102–5.

    Article  CAS  PubMed  Google Scholar 

  88. Dirckx JH. Julius Caesar and the Julian emperors: a family cluster with Hartnup disease? Am J Dermatopathol. 1986;8:351–7.

    Article  CAS  PubMed  Google Scholar 

  89. Levy HL. Hartnup disorder. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 2001. p. 4957–69.

    Google Scholar 

  90. Bröer S. The role of the neutral amino acid transporter B0AT1 (SLC6A19) in Hartnup disorder and protein nutrition. IUBMB Life. 2009;61:591–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Milne MD, Crawford MA, Girao CB, et al. The metabolic disorder in Hartnup disease. Q J Med. 1960;29:407–21.

    CAS  PubMed  Google Scholar 

  92. Asatoor AM, Cheng B, Edwards KDG, et al. Intestinal absorption of two dipeptides in Hartnup disease. Gut. 1970;11:380–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bröer A, Klingel K, Kowalczuk S, et al. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem. 2004;279:24467–76.

    Article  PubMed  CAS  Google Scholar 

  94. Kleta R, Romeo E, Ristic Z, et al. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat Genet. 2004;36:999–1002.

    Article  CAS  PubMed  Google Scholar 

  95. Seow HF, Bröer S, Bröer A, et al. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet. 2004;36:1003–7.

    Article  CAS  PubMed  Google Scholar 

  96. Bröer A, Cavanaugh JA, Rasko JE, et al. The molecular basis of neutral aminoacidurias. Pflugers Arch. 2006;451:511–7.

    Article  PubMed  CAS  Google Scholar 

  97. Azmanov DN, Kowalczuk S, Rodgers H, et al. Further evidence for allelic heterogeneity in Hartnup disorder. Hum Mutat. 2008;29:1217–21.

    Article  CAS  PubMed  Google Scholar 

  98. Scriver CR, Mahon B, Levy H, et al. The Hartnup phenotype: Mendelian transport disorder, multifactorial disease. Am J Hum Genet. 1987;40:401–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Camargo SMR, Singer D, Makrides V, et al. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with Hartnup mutations. Gastroenterology. 2009;136:872–82.

    Article  CAS  PubMed  Google Scholar 

  100. Kowalczuk S, Bröer A, Tietze N, et al. A protein complex in the brush-border membrane explains a Hartnup disorder allele. FASEB J. 2008;22:2880–7.

    Article  CAS  PubMed  Google Scholar 

  101. Singer D, Camargo SMR. Collectrin and ACE2 in renal and intestinal amino acid transport. Channels. 2011;5:410–23.

    Article  CAS  PubMed  Google Scholar 

  102. Jonas AJ, Butler IJ. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester. J Clin Invest. 1989;84:200–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Smith AJ, Strang LB. An inborn error of metabolism with the urinary excretion of α-hydroxybutyric acid and phenylpyruvic acid. Arch Dis Child. 1958;33:109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hooft C, Timmermans J, Snoeck J, et al. Methionine malabsorption syndrome. Ann Pediatr. 1965;205:73–84.

    CAS  Google Scholar 

  105. Sabater J, Ferre C, Puliol M, et al. Histidinuria: a renal and intestinal histidine transport deficiency found in two mentally retarded children. Clin Genet. 1976;9:117–24.

    Article  CAS  PubMed  Google Scholar 

  106. Holmgren G, Hambraeus L, De Chateau P. Histidinemia and "normohistidinemic histidinuria": report of three cases and the effect of different protein intakes on urinary excretion of histidine. Acta Paediatr Scand. 1974;63:220–4.

    Article  CAS  PubMed  Google Scholar 

  107. Kamoun PP, Parvy P, Chathelineau L, et al. Renal histidinuria. J Inherited Metab Dis. 1981;4:217–9.

    Article  CAS  PubMed  Google Scholar 

  108. Chesney RW. Iminoglycinuria. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 2001. p. 4971–81.

    Google Scholar 

  109. Turner B, Brown DA. Amino acid excretion in infancy and early childhood. A survey of 200,000 infants. Med J Aust. 1972;1:62–5.

    Article  CAS  PubMed  Google Scholar 

  110. Lasley L, Scriver CR. Ontogeny of amino acid reabsorption in human kidney. Evidence for the homozygous infant with familial renal iminoglycinuria for multiple proline and glycine systems. Pediatr Res. 1979;13:65–70.

    Article  CAS  PubMed  Google Scholar 

  111. Scriver CR. Renal tubular transport of proline, hydroxyproline and glycine. III. Genetic basis for more than one mode of transport in human kidney. J Clin Invest. 1968;47:823–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Greene ML, Lietman PS, Rosenberg LE, et al. Familial hyperglycinuria: new defect in renal tubular transport of glycine and imino acids. Am J Med. 1973;54:265–71.

    Article  CAS  PubMed  Google Scholar 

  113. Bröer S, Bailey CG, Kowalczuk S, et al. Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. J Clin Invest. 2008;118:3881–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. deVries A, Kochwa S, Lazebnik J, et al. Glycinuria, a hereditary disorder associated with nephrolithiasis. Am J Med. 1957;23:408–15.

    Article  CAS  Google Scholar 

  115. Kaser H, Cottier P, Antener I. Glucoglycinuria, a new familial syndrome. J Pediatr. 1962;61:386–94.

    Article  CAS  PubMed  Google Scholar 

  116. Tiejema HL, Van Gelderen HH, Giesberts MAH, et al. Dicarboxylic aminoaciduria: an inborn error of glutamate and aspartate transport with metabolic implications in combination with hyperprolinemia. Metabolism. 1974;23:115–23.

    Article  Google Scholar 

  117. Melancon SB, Dallaire L, Lemieux B, et al. Dicarboxylic aminoaciduria: an inborn error of amino acid conservation. J Pediatr. 1977;91:422–7.

    Article  CAS  PubMed  Google Scholar 

  118. Auray-Blais C, Cyr D, Drouin R. Quebec neonatal mass urinary screening programme: from micromolecules to macromolecules. J Inherit Metab Dis. 2007;30:515–21.

    Article  CAS  PubMed  Google Scholar 

  119. Bailey CG, Ryan RM, Thoeng AD, et al. Loss-of-function mutations in the glutamate transporter SLCA1 cause human dicarboxylic aminoaciduria. J Clin Invest. 2011;121:446–53.

    Article  CAS  PubMed  Google Scholar 

  120. Melancon SB, Grenier B, Dallaire L, et al. Dicarboxylic amino acid uptake in normal, Friedreich’s ataxia, and dicarboxylic aminoaciduria fibroblasts. J Can Sci Neurol. 1979;6:262–73.

    Article  Google Scholar 

  121. Rozen R, Scriver CR, Mohyuddin F. Hypertaurinuria in the C57BL/6J mouse: altered transport at the renal basolateral membrane. Am J Phys. 1983;244:F150–5.

    CAS  Google Scholar 

  122. Mandla S, Scriver CR, Tenenhouse HS. Decreased transport in renal basolateral membrane vesicles from hypertaurinuric mice. Am J Phys. 1988;255:F88–95.

    CAS  Google Scholar 

  123. Hummel CS, Wright EM. Glucose reabsorption in the kidney. In: Alpern RJ, Moe OW, Caplan M, editors. Seldin and Giebisch’s the kidney: physiology and pathophysiology. 5th ed: Elsevier Inc; 2013. p. 2393–3404.

    Google Scholar 

  124. Sacktor B. Sodium-coupled hexose transport. Kidney Int. 1989;36:342–50.

    Article  CAS  PubMed  Google Scholar 

  125. Elsas LJ, Longo N. Glucose transporters. Annu Rev Med. 1992;43:377–93.

    Article  CAS  PubMed  Google Scholar 

  126. Elsas LJ, Rosenberg LE. Familial renal glycosuria: a genetic reappraisal of hexose transport by kidney and intestine. J Clin Invest. 1969;48:1845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Brodehl J, Franken A, Gellissen K. Maximal tubular reabsorption of glucose in infants and children. Acta Paediatr Scand. 1972;61:413–20.

    Article  CAS  PubMed  Google Scholar 

  128. Barfuss DW, Schafer JA. Differences in active and passive glucose transport along the proximal nephron. Am J Phys. 1981;241:F322–32.

    CAS  Google Scholar 

  129. Turner RJ, Moran A. Stoichiometric studies of the renal cortical brush border membrane D-glucose transporter. J Membr Biol. 1982;67:73–80.

    Article  CAS  PubMed  Google Scholar 

  130. Turner RJ, Moran A. Further studies of proximal tubular brush-border membrane. D-glucose transport heterogeneity. J Membr Biol. 1982;70:37–45.

    Article  CAS  PubMed  Google Scholar 

  131. Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflugers Arch. 2004;447:510–8.

    Article  CAS  PubMed  Google Scholar 

  132. Wright EM, Loo DD, Hirayama BA, et al. Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology (Bethesda). 2004;19:370–6.

    CAS  Google Scholar 

  133. Wright EM, Loo DDF, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–94.

    Article  CAS  PubMed  Google Scholar 

  134. Hediger MA, Turk E, Wright EM. Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc Natl Acad Sci U S A. 1989;86:5748–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hediger MA, Budard ML, Emanual BS, et al. Assignment of the human intestinal Na+/glucose gene (SGLT 1) to the q11.2lqter regions of chromosome 22. Genomics. 1989;4:297–300.

    Article  CAS  PubMed  Google Scholar 

  136. Pajor AM, Hirayama BA, Wright EM. Molecular evidence for two renal Na+/glucose cotransporters. Biochim Biophys Acta. 1992;1106:216–20.

    Article  CAS  PubMed  Google Scholar 

  137. Lee WS, Kanai Y, Wells RG, et al. The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression. J Biol Chem. 1994;269:12032–9.

    Article  CAS  PubMed  Google Scholar 

  138. Kanai Y, Lee WS, You G, et al. The human kidney low affinity Na+/glucose cotransporter SGLT2, delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest. 1994;93:397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wells RG, Mohandas TK, Hediger MA. Localization of the Na+/glucose cotransporter gene SGLT2 to human chromosome 16 close to the centromere. Genomics. 1993;17:787–9.

    Article  CAS  PubMed  Google Scholar 

  140. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Asp Med. 2013;34:121–38.

    Article  CAS  Google Scholar 

  141. Thorens B, Mueckler M. Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab. 2010;298:E141–5.

    Article  CAS  PubMed  Google Scholar 

  142. Thorens B, Cheng ZQ, Brown D, et al. Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney epithelial cells. Am J Phys. 1990;259:C279–85.

    Article  CAS  Google Scholar 

  143. Thorens B, Lodish HF, Brown D. Differential localization of two glucose transporter isoforms in kidney nephron. Am J Phys. 1990;259:C286–95.

    Article  CAS  Google Scholar 

  144. Wright E, Martin MG, Turk E. Familial glucose-galactose malabsorption and hereditary glycosuria. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 2001. p. 4891–908.

    Google Scholar 

  145. Elsas LJ, Busse D, Rosenberg LE. Autosomal recessive inheritance of renal glycosuria. Metabolism. 1971;20:968–75.

    Article  CAS  PubMed  Google Scholar 

  146. Woolf LI, Goodwin BL, Phelps CE. Tm-limited renal tubular reabsorption and the genetics of renal glucosuria. J Theor Biol. 1966;11:10–21.

    Article  CAS  PubMed  Google Scholar 

  147. Oemar BS, Byrd DJ, Brodehl J. Complete absence of tubular glucose reabsorption: a new type of renal glucosuria (type 0). Clin Nephrol. 1987;27:156–60.

    CAS  PubMed  Google Scholar 

  148. van den Heuvel LP, Assink K, Willemsen M, et al. Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet. 2002;111:544–7.

    Article  PubMed  CAS  Google Scholar 

  149. Calado J, Sznajer Y, Metzger D, et al. Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion. Nephrol Dial Transplant. 2008;23:3874–9.

    Article  CAS  PubMed  Google Scholar 

  150. Cannizzaro M, Jarosova J, De Paepe B. Relevance of solute carrier family 5 transporter defects to inherited and acquired human disease. J Appl Genet. 2019;60:305–17.

    Article  CAS  PubMed  Google Scholar 

  151. Magen D, Sprecher E, Zelikovic I, et al. A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria. Kidney Int. 2005;67:34–41.

    Article  CAS  PubMed  Google Scholar 

  152. Ellard S. Hepatocyte nuclear factor 1 alpha (HNF-1 α) mutations in maturity-onset diabetes of the young. Hum Mutat. 2000;16:377–85.

    Article  CAS  PubMed  Google Scholar 

  153. Pontoglio M, Barra J, Hadchouel M, et al. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell. 1996;84:575–85.

    Article  CAS  PubMed  Google Scholar 

  154. Fukui K, Yang Q, Cao Y, et al. The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. Cell Metab. 2005;2:373–84.

    Article  CAS  PubMed  Google Scholar 

  155. Elsas LJ, Hillman RE, Patterson JH, et al. Renal and intestinal hexose transport in familial glucose-galactose malabsorption. J Clin Invest. 1970;49:576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Turk E, Zabel B, Mundlos S, et al. Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature. 1991;350:354–6.

    Article  CAS  PubMed  Google Scholar 

  157. Santer R, Calado J. Familial renal glucosuria and SGLT2: from a Mendelian trait to a therapeutic target. Clin J Am Soc Nephrol. 2010;5:133–41.

    Article  CAS  PubMed  Google Scholar 

  158. Zelikovic I. Hereditary tubulopathies. In: Oh W, Baum M, editors. Nephrology and fluid/electrolyte physiology: neonatology questions and controversies. 3rd ed. Philadelphia: Elsevier; 2019. p. 315–44.

    Chapter  Google Scholar 

  159. Vallon V, Platt K, Cunard R, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. Am J Soc Nephrol. 2011;22:104–12.

    Article  CAS  Google Scholar 

  160. Ly J, Onay T, Sison K, et al. The sweet pee model for SGLT2 mutation. Am J Soc Nephrol. 2011;22:113–23.

    Article  CAS  Google Scholar 

  161. Manz F, Bickel H, Brodehl J, et al. Fanconi-Bickel syndrome. Pediatr Nephrol. 1987;1:509–18.

    Article  CAS  PubMed  Google Scholar 

  162. Santer R, Schneppenheim R, Dombrowski A, et al. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet. 1997;17:324–6.

    Article  CAS  PubMed  Google Scholar 

  163. Santer R, Steinmann B, Schaub J. Fanconi-Bickel syndrome- a congenital defect of facilitative glucose transport. Curr Mol Med. 2002;2:213–27.

    Article  CAS  PubMed  Google Scholar 

  164. Sharari S, Abou-Alloul M, Hussain K, et al. Fanconi-Bickel syndrome: a review of the mechanisms that lead to the dysglycaemia. Int J Mol Sci. 2020;21:6286–307.

    Article  CAS  PubMed Central  Google Scholar 

  165. Santer R, Groth S, Kinner M, et al. The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Hum Genet. 2002;110:21–9.

    Article  CAS  PubMed  Google Scholar 

  166. Mannstadt M, Magen D, Segawa H, et al. Fanconi-Bickel syndrome and autosomal recessive proximal tubulopathy with hypercalciuria (ARPTH) are allelic variants caused by GLUT2 mutations. J Clin Endocrinol Metab. 2012;97:E1978–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Enogieru OJ, Ung PMU, Yee SW, et al. Functional and structural analysis of rare SLC2A2 variants associated with Fanconi-Bickel syndrome and metabolic traits. Hum Mutat. 2019;40:983–95.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Zelikovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zelikovic, I., Servais, A. (2021). Aminoaciduria and Glycosuria in Children. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_33-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_33-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Aminoaciduria and Glycosuria in Children
    Published:
    18 March 2022

    DOI: https://doi.org/10.1007/978-3-642-27843-3_33-2

  2. Original

    Aminoaciduria and Glycosuria in Children
    Published:
    10 February 2015

    DOI: https://doi.org/10.1007/978-3-642-27843-3_33-1