Skip to main content

Communication Networks: Pricing, Congestion Control, Routing, and Scheduling

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Dynamic Game Theory

Abstract

This chapter considers three fundamental problems in the general area of communication networks and their relationship to game theory. These problems are (i) allocation of shared bandwidth resources, (ii) routing across shared links, and (iii) scheduling across shared spectrum. Each problem inherently involves agents that experience negative externalities under which the presence of one degrades the utility perceived by others. Two approaches to solving such problems are (i) to find a globally optimal allocation and simply implement it in a fait accompli fashion, and (ii) request information from the competing agents (traffic flows) and construct a mechanism to allocate resources. Often, only the second option is viable, since a centralized solution using complete information might be impractical (or impossible) with many millions of competing flows, each one having private information about the application that it corresponds to. Hence, a game theoretical analysis of these problems is natural. In what follows, we will present results on each problem and characterize the efficiency loss that results from the mechanism employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adlakha S, Johari R (2013) Mean field equilibrium in dynamic games with strategic complementarities. Oper Res 61(4):971–989

    Article  MathSciNet  Google Scholar 

  • Benaïm M, Le Boudec J-Y (2008) A class of mean field interaction models for computer and communication systems. Perform Eval 65(11–12):823–838

    Article  Google Scholar 

  • Billingsley P (2009) Convergence of probability measures. Wiley-Interscience, Hoboken

    MATH  Google Scholar 

  • Borkar V, Sundaresan R (2012) Asymptotics of the invariant measure in mean field models with jumps. Stoch Syst 2(2):322–380

    Article  MathSciNet  Google Scholar 

  • Braess D (1968) Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung 12(1):258–268

    MathSciNet  MATH  Google Scholar 

  • Clarke EH (1971) Multipart pricing of public goods. Public Choice 11(1):17–33

    Article  Google Scholar 

  • Graham C, Méléard S (1994) Chaos hypothesis for a system interacting through shared resources. Probab Theory Relat Fields 100(2):157–174

    Article  MathSciNet  Google Scholar 

  • Groves T (1973) Incentives in teams. Econometrica J Econom Soc 41(4):617–631

    Article  MathSciNet  Google Scholar 

  • Hernández-Lerma O, de Ozak MM (1992) Discrete-time Markov control processes with discounted unbounded costs: optimality criteria. Kybernetika 28(3):191–212

    MathSciNet  MATH  Google Scholar 

  • Iyer K, Johari R, Sundararajan M (2014) Mean field equilibria of dynamic auctions with learning. Manag Sci 60(12):2949–2970

    Article  Google Scholar 

  • Johari R, Tsitsiklis JN (2004) Efficiency loss in a network resource allocation game. Math Oper Res 29(3):407–435

    Article  MathSciNet  Google Scholar 

  • Johari R, Tsitsiklis JN (2005) Communication requirements of VCG-like mechanisms in convex environments. In: Proceedings of the Allerton Conference on Control, Communications and Computing, pp 1191–1196

    Google Scholar 

  • Kelly FP (1997) Charging and rate control for elastic traffic. Eur Trans Telecommun 8:33–37

    Article  Google Scholar 

  • Li J, Xia B, Geng X, Ming H, Shakkottai S, Subramanian V, Xie L (2015) Energy coupon: a mean field game perspective on demand response in smart grids. ACM SIGMETRICS Perform Eval Rev 43(1):455–456

    Article  Google Scholar 

  • Li J, Bhattacharyya R, Paul S, Shakkottai S, Subramanian V (2017) Incentivizing sharing in realtime D2D streaming networks: a mean field game perspective. IEEE/ACM Trans Netw 25(1):3–17

    Article  Google Scholar 

  • Maheswaran RT, Basar T (2006) Efficient signal proportional allocation (ESPA) mechanisms: decentralized social welfare maximization for divisible resources. IEEE J Sel Areas Commun 24(5):1000–1009

    Article  Google Scholar 

  • Manjrekar M, Ramaswamy V, Shakkottai S (2014) A mean field game approach to scheduling in cellular systems. In: Proceedings IEEE INFOCOM, 2014, Toronto, pp 1554–1562

    Google Scholar 

  • Meyn SP, Tweedie RL, Glynn PW (2009) Markov chains and stochastic stability, vol 2. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pigou AC (1920) The economics of welfare. Palgrave Macmillan, New York

    Google Scholar 

  • Roughgarden T (2015) Intrinsic robustness of the price of anarchy. J ACM 62(5):32

    Article  MathSciNet  Google Scholar 

  • Roughgarden T (2016) Twenty lectures on algorithmic game theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Roughgarden T, Schoppmann F (2015) Local smoothness and the price of anarchy in splittable congestion games. J Econ Theory 156:317–342

    Article  MathSciNet  Google Scholar 

  • Roughgarden T, Tardos E (2002) How bad is selfish routing? J ACM 49(2):236–259

    Article  MathSciNet  Google Scholar 

  • Shakkottai S, Srikant R (2007) Network optimization and control. Found Tr Netw 2(3):271–379

    Article  Google Scholar 

  • Srikant R (2004) The mathematics of internet congestion control. Birkhauser, New York

    Book  Google Scholar 

  • Strauch RE (1966) Negative dynamic programming. Ann Math Stat 37(4):871–890

    Article  MathSciNet  Google Scholar 

  • Tembine H, Le Boudec JY, El-Azouzi R, Altman E (2009) Mean field asymptotics of Markov decision evolutionary games and teams. In: International Conference on Game Theory for Networks (GameNets), pp 140–150

    Google Scholar 

  • Vickrey W (1961) Counterspeculation, auctions, and competitive sealed tenders. J Financ 16(1):8–37

    Article  MathSciNet  Google Scholar 

  • Xu J, Hajek B (2012) The supermarket game. In: IEEE International Symposium on Information Theory (ISIT, 2012), Cambridge, pp 2511–2515

    Google Scholar 

  • Yang S, Hajek B (2007) VCG-Kelly mechanisms for allocation of divisible goods: adapting VCG mechanisms to one-dimensional signals. IEEE J Sel Areas Commun 25(6):1237–1243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas Shakkottai .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shakkottai, S., Srikant, R. (2020). Communication Networks: Pricing, Congestion Control, Routing, and Scheduling. In: Basar, T., Zaccour, G. (eds) Handbook of Dynamic Game Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-27335-8_29-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27335-8_29-2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27335-8

  • Online ISBN: 978-3-319-27335-8

  • eBook Packages: Springer Reference Religion and PhilosophyReference Module Humanities and Social SciencesReference Module Humanities

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Communication Networks: Pricing, Congestion Control, Routing, and Scheduling
    Published:
    02 December 2019

    DOI: https://doi.org/10.1007/978-3-319-27335-8_29-2

  2. Original

    Communication Networks: Pricing, Congestion Control, Routing, and Scheduling
    Published:
    02 May 2017

    DOI: https://doi.org/10.1007/978-3-319-27335-8_29-1