Skip to main content

Radionuclide Therapy of Leukemias and Multiple Myeloma

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Nuclear Oncology

Abstract

Monoclonal antibodies (MAbs) raised against cancer antigens may mediate antibody-dependent cell-mediated cytotoxicity. This form of cancer control arises from cytolysis of a target cell by effector lymphocytes, such as cytotoxic T lymphocytes or natural killer cells. However, most of these antibodies have low/moderate efficacy in the tumor control. Antibodies targeting hormone receptors expressed by cancer have shown greater tumor control compared with other cell membrane targets. Moreover, the labeling of these antibodies with a toxin can potentiate their efficacy in the tumor control. In this way, the antibody becomes an invaluable targeting vector for delivery of the toxin to the cancer cells. The toxin/antibody complex is called the immunoconjugate. Different molecules, chemicals, or radioisotopes can serve themselves as toxins; toxins may have long half-lives in the body (e.g., ricin), thus increasing the toxicity to both the cancer and normal tissues.

However, the different radioisotopes (e.g., iodine-131, lutetium-177) have a wide range of half-lives and radiation decay that make them useful for different applications.

Beta-emitting radioisotopes, predominantly I-131, have had only modest success in radioimmunotherapy. More recently, high linear energy transfer (LET) radiation in the form of alpha particles has been studied: alpha radiation is ideal for killing isolated cancer cells in transit in the vascular and lymphatic systems and regressing tumors by disruption of tumor capillary networks by targeting and killing tumor capillary endothelial cells.

Over the past 20 years the development of alpha-immunoconjugates has enabled targeted alpha therapy (TAT) to progress from in vitro studies, through in vivo experiments, to clinical trials. The dose to normal tissues always provides a limitation to the injected dose and that received by the tumor. However, TAT can achieve cancer regression within the maximum tolerance dose for normal tissue. TAT was originally thought to be an ideal therapy for “liquid” cancers, e.g., leukemia and micro-metastases, as the short half-lives of the radioisotopes were sufficient to target these cancer cells and the short range ensured that the targeted cancer cells received the highest radiation dose. Different antibodies have been developed and tested in clinical trials as conditioning treatment, but none of them have yet been approved for radioimmunotherapy (RIT) in multiple myeloma (MM). Addiotinally, bone-seeking radiopharmaceuticals are being evaluated in MM patients in the transplant setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

ALL:

Acute lymphocytic leukemia

alloHSCT:

Allogeneic hematopoietic stem cell transplantation

AML:

Acute myeloid leukemia

APL:

Acute promyelocytic leukemia

ASCO:

American Society of Clinical Oncology

ASCT:

Autologous stem cell transplantation

ATO:

Arsenic trioxide

ATP:

Adenosine 5′-triphosphate

ATRA:

All-trans retinoic acid

BCP-ALL:

B-cell precursor acute lymphoblastic leukemia

BCR:

B-cell receptor

BMT:

Bone marrow transplantation

BR:

Bendamustine plus rituximab

BTK:

Bruton’s tyrosine kinase

CBF:

Core binding factor

cDNAs:

Complementary deoxyribonucleic acid

Clb:

Chlorambucil

CLL:

Chronic lymphocytic leukemia

CML:

Chronic myeloid leukemia

CNS:

Central nervous system

CR:

Complete response

CRAB:

Syndrome including hypercalcemia, renal failure, anemia, bone lesions

CT:

X-ray computed tomography

CTD:

Cyclophosphamide/thalidomide/dexamethasone

CVAD:

Cyclophosphamide, vincristine, doxorubicin, dexamethasone

DCF:

Deoxycoformycin

DIC:

Disseminated intravasal coagulation

DNA:

Deoxyribonucleic acid

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DOTMP:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonic acid

DSF:

Disease-free survival

DTPA:

Diethylenetriaminepentaacetic acid

DVD:

Doxorubicin liposomal-vincristine-dexamethasone

EBRT:

External beam radiotherapy

EDTMP:

Ethylenediamine tetra(methylene phosphonic acid)

EMA:

European Medicines Agency

ESMO:

European Society of Clinical Oncology

FCR:

Chemotherapy regimen based on fludarabine cyclophosphamide, and rituximab

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

GMMG:

German Multicenter Myeloma Group

GVHD:

Graft versus host disease

Gy:

Gray unit (ionizing radiation dose in the International System of Units, corresponding to the absorption of one joule of radiation energy per kilogram of matter)

HAMA:

Human anti-mouse antibody

HCL:

Hairy cell leukemia

HCL-V:

Hairy cell leukemia variant

HD:

High-dose

HLA:

Human leucocyte antigen

HLA-DR:

Human Leukocyte Antigen-antigen D related

HOVON:

Dutch-Belgian Hemato-Oncology Cooperative Group

HR:

High risk

IFN-α:

Interferon-α

IMiDs:

Immunomodulatory drugs

ITD:

Internal tandem duplications

KIR:

Killer immunoglobulin-like Receptor

LAIP:

Leukemia-associated immunophenotype

LET:

Linear energy transfer

MAbs:

Monoclonal antibodies

MDACC:

MD Anderson Cancer Center

MDR:

Multidrug resistance

MDS:

Myelodysplastic syndrome

MM:

Multiple myeloma

MP:

Melphalan and prednisone

MPR:

Melphalan/prednisone/lenalidomide

MPT:

Melphalan/prednisone/thalidomide

MRD:

Minimal residual disease

mRNAs:

Messenger ribonucleic acid

MTD:

Maximum tolerable dose

NHL:

Non-Hodgkin lymphomas

NLS:

Nuclear localization signal peptide

NMRI:

Naval Medical Research Institute

NOD:

Nonobese diabetic

NPM:

Nucleophosmin

NSG:

Mouse model of immunodeficiency

OR:

Odd ratio

OS:

Overall survival

PAD:

Bortezomib, doxorubicin, and dexamethasone

PCR:

Polymerase chain reaction

PET:

Positron emission tomography

PFS:

Progression-free survival

Ph+:

Philadelphia positive

PRIT:

Pretargeted radioimmunotherapy

R:

Rituximab

RANKL:

Receptor activator of nuclear factor kappa-B ligand

RIC:

Dose-reduced chemotherapy intensity

RIT:

Radioimmunotherapy

RT:

Reverse transcriptase

RVD:

Lenalidomide-bortezomib-dexamethasone

SCID:

Severe combined immunodeficiency

SCT:

Stem cell transplantation

SLL:

Small lymphocytic leukemia

SPECT:

Single-photon emission computed tomography

SR:

Standard risk

TAT:

Targeted alpha therapy

TBI:

Total body irradiation

TD:

Thalidomide-dexamethasone

TKI:

Tyrosine kinase inhibitor

TRM:

Treatment-related mortality

VAD:

Chemotherapy regime based on vincristine, adriamycin, doxorubicin

VCD:

Bortezomib-cyclophosphamide-dexamethasone

VMP:

Bortezomib/melphalan/prednisone

VP:

Bortezomib-prednisone

VTD:

Velcade-thalidomide-dexamethasone

VTP:

Bortezomib-thalidomide-prednisone

WBC:

White blood cells

References

  1. Richman CM, DeNardo SJ, O’Donnell RT, et al. High-dose radioimmunotherapy combined with fixed, low-dose paclitaxel in metastatic prostate and breast cancer by using a MUC-1 monoclonal antibody, m170, linked to indium-111/yttrium-90 via a cathepsin cleavable linker with cyclosporine to prevent human anti-mouse antibody. Clin Cancer Res. 2005;11:5920–7.

    Article  CAS  PubMed  Google Scholar 

  2. Behr TM, Griesinger F, Riggert J, et al. High-dose myeloablative radioimmunotherapy of mantle cell non-Hodgkin lymphoma with the iodine-131-labeled chimeric anti-CD20 antibody C2B8 and autologous stem cell support. Results of a pilot study. Cancer. 2002;94:1363–72.

    Article  CAS  PubMed  Google Scholar 

  3. Nademanee A, Forman S, Molina A, et al. A phase 1/2 trial of high-dose yttrium-90-ibritumomab tiuxetan in combination with high-dose etoposide and cyclophosphamide followed by autologous stem cell transplantation in patients with poor-risk or relapsed non-Hodgkin lymphoma. Blood. 2005;106:2896–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoelzer D, Bassan R, Dombret H, et al. Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;00:1–14.

    Google Scholar 

  5. Advani AS, Mcdonough S, Coutre S, et al. SWOG S0910: a phase 2 trial of clofarabine/cytarabine/epratuzumab for relapsed/refractory acute lymphocytic leukaemia. Br J Haematol. 2014;165:504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kantarjian H, Thomas D, Jorgensen J, et al. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer. 2013;119:2728–36.

    Article  CAS  PubMed  Google Scholar 

  7. Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375:740–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benjamin JE, Stein AS. The role of blinatumomab in patients with relapsed/refractory acute lymphoblastic leukemia. Ther Adv Hematol. 2016;7:142–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishiwaki S, Miyamura K, Ohashi K, et al. Impact of a donor source on adult philadelphia chromosome-negative acute lymphoblastic leukemia: a retrospective analysis from the adult acute lymphoblastic leukemia working group of the japan society for hematopoietic cell transplantation. Ann Oncol. 2013;24:1594–602.

    Article  CAS  PubMed  Google Scholar 

  10. Oliansky D, Camitta B, Gaynon P, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the treatment of pediatric acute lymphoblastic leukemia: update of the 2005 evidence-based review. ASBMT Position Statement. Biol Blood Marrow Transplant. 2012;18:979–81.

    Article  PubMed  Google Scholar 

  11. Marks DI, Woo KA, Zhong X, et al. Unrelated umbilical cord blood transplant for adult acute lymphoblastic leukemia in first and second complete remission: a comparison with allografts from adult unrelated donors. Haematologica. 2014;99:322–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Atsuta Y, Suzuki R, Nagamura-Inoue T, et al. Disease-specific analyses of unrelated cord blood transplantation compared with unrelated bone marrow transplantation in adult patients with acute leukemia. Blood. 2009;113:1631–8.

    Article  PubMed  Google Scholar 

  13. Goldstone A, Richards S, Lazarus H, et al. In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission. Blood. 2008;111:1827–33.

    Article  CAS  PubMed  Google Scholar 

  14. Annino L, Vegna ML, Camera A, et al. Treatment of adult acute lymphoblastic leukemia (ALL): long-term follow-up of the GIMEMA ALL 0288 randomized study. Blood. 2002;99:863–71.

    Article  CAS  PubMed  Google Scholar 

  15. Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011;29:532–43.

    Article  PubMed  Google Scholar 

  16. Marks DI, Paietta EM, Moorman AV, et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial. Leukemia. 2009;114:5136–45.

    CAS  Google Scholar 

  17. Hoelzer D, Walewski J, Döhner H, et al. Improved outcome of adult Burkitt lymphoma/leukemia with rituximab and chemotherapy: report of a large prospective multicenter trial. Blood. 2014;124:3870–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Specchia G, Pastore D, Carluccio P, et al. FLAG-IDA in the treatment of refractory/relapsed adult acute lymphoblastic leukemia. Ann Hematol. 2005;84:792–5.

    Article  CAS  PubMed  Google Scholar 

  19. Hijiya N, Thomson B, Isakoff MS, et al. Phase 2 trial of clofarabine in combination with etoposide and cyclophosphamide in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. Blood. 2011;118:6043–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Brien S, Schiller G, Lister J, et al. High-dose vincristine sulfate liposome injection for advanced, relapsed, and refractory adult philadelphia chromosome-negative acute lymphoblastic leukemia. J Clin Oncol. 2013;31:676–83.

    Article  PubMed  CAS  Google Scholar 

  21. DeAngelo DJ, Yu D, Johnson JL, et al. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood. 2007;109:5136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vignetti M, Fazi P, Cimino G, et al. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell’Adulto. Blood. 2007;109:3676–8.

    Article  CAS  PubMed  Google Scholar 

  23. Foà R, Vitale A, Vignetti M, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118:6521–8.

    Article  PubMed  CAS  Google Scholar 

  24. Rousselot P, Coude MM, Gokbuget N, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016;128:774–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jabbour E, Kantarjian H, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncol. 2015;16:1547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chevallier P, Bodet-Milin C, Robillard N, et al. BCR-ABL1 molecular remission after 90Y-epratuzumab tetraxetan radioimmunotherapy in CD22+ Ph+ B-ALL: proof of principle. Eur J Haematol. 2013;91:552–6.

    Article  CAS  PubMed  Google Scholar 

  27. Chevallier P, Eugene T, Robillard N, et al. 90Y-labelled anti-CD22 epratuzumab tetraxetan in adults with refractory or relapsed CD22-positive B-cell acute lymphoblastic leukaemia: a phase 1 dose-escalation study. Lancet Haematol. 2015;2:e108–17.

    Google Scholar 

  28. Putzer D, Dobrozemsky G, Haubner R, et al. 124I-anti-CD52 dosimetry before radioimmunotherapy as part of conditioning for stem cell transplantation in acute leukemia. Clin Nucl Med. 2012;37:390–392.

    Google Scholar 

  29. Eichhorst B, Robak T, Montserrat E, et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:v78–84.

    Article  PubMed  Google Scholar 

  30. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet (London). 2010;376:1164–74.

    Article  CAS  Google Scholar 

  31. Robak T, Jamroziak K, Gora-Tybor J, et al. Comparison of cladribine plus cyclophosphamide with fludarabine plus cyclophosphamide as first-line therapy for chronic lymphocytic leukemia: a phase III randomized study by the Polish Adult Leukemia Group (PALG-CLL3 Study). J Clin Oncol. 2010;28:1863–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kay NE, Geyer SM, Call TG, et al. Combination chemoimmunotherapy with pentostatin, cyclophosphamide, and rituximab shows significant clinical activity with low accompanying toxicity in previously untreated B chronic lymphocytic leukemia. Blood. 2007;109:405–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370:1101–10.

    Article  CAS  PubMed  Google Scholar 

  34. Varma G, Johnson T, Advani R. Bruton’s tyrosine kinase inhibitors in chronic lymphocytic leukemia and lymphoma. Clin Adv Hematol Oncol. 2016;14:543–54.

    PubMed  Google Scholar 

  35. Keating GM. Idelalisib: a review of its use in chronic lymphocytic leukaemia and indolent non-Hodgkin’s lymphoma. Target Oncol. 2015;10:141–51.

    Article  PubMed  Google Scholar 

  36. Dreger P, Schetelig J, Andersen N, et al. Managing high-risk CLL during transition to a new treatment era: stem cell transplantation or novel agents? Blood. 2014;124:3841–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371:213–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370:997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brion A, Mahé B, Kolb B, et al. Autologous transplantation in CLL patients with B and C Binet stages: final results of the prospective randomized GOELAMS LLC 98 trial. Bone Marrow Transplant. 2012;47:542–8.

    Article  CAS  PubMed  Google Scholar 

  40. Seymour JF, Cusack JD, Lerner SA, et al. Case/control study of the role of splenectomy in chronic lymphocytic leukemia. J Clin Oncol. 1997;15:52–60.

    Article  CAS  PubMed  Google Scholar 

  41. Rubin P, Bennett JM, Begg C, et al. The comparison of total body irradiation vs chlorambucil and prednisone for remission induction of active chronic lymphocytic leukemia: an ECOG study. Part I: total body irradiation-response and toxicity. Int J Radiat Oncol Biol Phys. 1981;7:1623–32.

    Article  CAS  PubMed  Google Scholar 

  42. DeNardo GL, Lewis JP, DeNardo SJ, et al. Effect of Lym-1 radioimmunoconjugate on refractory chronic lymphocytic leukemia. Cancer. 1994;73:1425–32.

    Article  CAS  PubMed  Google Scholar 

  43. Epstein AL, Marder RJ, Winter JN, et al. Two new monoclonal antibodies, Lym-1 and Lym-2, reactive with human B-lymphocytes and derived tumors, with immunodiagnostic and immunotherapeutic potential. Cancer Res. 1987;47:830–40.

    CAS  PubMed  Google Scholar 

  44. DeNardo GL, DeNardo SJ, O’Grady LF, et al. Fractionated radioimmunotherapy of B-cell malignancies with 131I-Lym-1. Cancer Res. 1990;50:1014s–6s.

    CAS  PubMed  Google Scholar 

  45. DeNardo SJ, DeNardo GL, O’Grady LF, et al. Treatment of B cell malignancies with 131I Lym-1 monoclonal antibodies. Int J Cancer Suppl. 1988;3:96–101.

    Article  CAS  PubMed  Google Scholar 

  46. DeNardo GL, DeNardo SJ, O’Grady LF, et al. Radiation treatment of B cell malignancies with immunoconjugate. Front Radiat Ther Oncol. 1990;24:194–201; discussion 202–3.

    Article  CAS  PubMed  Google Scholar 

  47. Hu E, Epstein AL, Naeve GS, et al. A phase 1a clinical trial of LYM-1 monoclonal antibody serotherapy in patients with refractory B cell malignancies. Hematol Oncol. 1989;7:155–66.

    Article  CAS  PubMed  Google Scholar 

  48. Kaminski MS, Zelenetz AD, Press OW, et al. Pivotal study of iodine I-131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol. 2001;19:3918–28.

    Article  CAS  PubMed  Google Scholar 

  49. De Decker M, Bacher K, Thierens H, et al. In vitro and in vivo evaluation of direct rhenium-188-labeled anti-CD52 monoclonal antibody alemtuzumab for radioimmunotherapy of B-cell chronic lymphocytic leukemia. Nucl Med Biol. 2008;35:599–604.

    Article  PubMed  CAS  Google Scholar 

  50. Lauter A, Strumpf A, Platzbecker U, et al. 188Re anti-CD66 radioimmunotherapy combined with reduced-intensity conditioning and in-vivo T cell depletion in elderly patients undergoing allogeneic haematopoietic cell transplantation. Br J Haematol. 2010;148:910–917.

    Google Scholar 

  51. Repetto-Llamazares AHV, Larsen RH, Giusti AM, et al. 177Lu-DOTA-HH1, a novel anti-CD37 radio-immunoconjugate: a study of toxicity in nude mice. PLoS One. 2014;9:e103070.

    Google Scholar 

  52. Shadman M, Gopal AK, Kammerer B, et al. Radioimmunotherapy consolidation using 131I-tositumomab for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma in first remission. Leuk Lymphoma. 2016;57:572–6.

    Article  CAS  PubMed  Google Scholar 

  53. Jain N, Wierda W, Ferrajoli A, et al. A phase 2 study of yttrium-90 ibritumomab tiuxetan (Zevalin) in patients with chronic lymphocytic leukemia. Cancer. 2009;115:4533–9.

    Article  CAS  PubMed  Google Scholar 

  54. Grever MR. How I treat hairy cell leukemia. Blood. 2010;115:21–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cornet E, Delmer A, Feugier P, et al. Recommendations of the SFH (French Society of Haematology) for the diagnosis, treatment and follow-up of hairy cell leukaemia. Ann Hematol. 2014;93:1977–83.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Robak T, Matutes E, Catovsky D, et al. Hairy cell leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:v100–7.

    Article  PubMed  Google Scholar 

  57. Lauria F, Cencini E, Forconi F. Alternative methods of cladribine administration. Leuk Lymphoma. 2011;52(Suppl 2):34–7.

    Article  CAS  PubMed  Google Scholar 

  58. Else M, Dearden CE, Matutes E, et al. Long-term follow-up of 233 patients with hairy cell leukaemia, treated initially with pentostatin or cladribine, at a median of 16 years from diagnosis. Br J Haematol. 2009;145:733–40.

    Article  CAS  PubMed  Google Scholar 

  59. Dearden CE, Else M, Catovsky D. Long-term results for pentostatin and cladribine treatment of hairy cell leukemia. Leuk Lymphoma. 2011;52(Suppl 2):21–4.

    Article  CAS  PubMed  Google Scholar 

  60. Flinn IW, Kopecky KJ, Foucar MK, et al. Long-term follow-up of remission duration, mortality, and second malignancies in hairy cell leukemia patients treated with pentostatin. Blood. 2000;96:2981–6.

    CAS  PubMed  Google Scholar 

  61. Grever M, Kopecky K, Foucar MK, et al. Randomized comparison of pentostatin versus interferon alfa-2a in previously untreated patients with hairy cell leukemia: an intergroup study. J Clin Oncol. 1995;13:974–82.

    Article  CAS  PubMed  Google Scholar 

  62. Habermann TM, Rai K. Historical treatments of in hairy cell leukemia, splenectomy and interferon: past and current uses. Leuk Lymphoma. 2011;52(Suppl 2):18–20.

    Article  PubMed  Google Scholar 

  63. Naik RR, Saven A. My treatment approach to hairy cell leukemia. Mayo Clin Proc. 2012;87:67–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jones G, Parry-Jones N, Wilkins B, et al. Revised guidelines for the diagnosis and management of hairy cell leukaemia and hairy cell leukaemia variant*. Br J Haematol. 2012;156:186–95.

    Article  CAS  PubMed  Google Scholar 

  65. Zinzani PL, Pellegrini C, Stefoni V, et al. Hairy cell leukemia: evaluation of the long-term outcome in 121 patients. Cancer. 2010;116:4788–92.

    Article  PubMed  Google Scholar 

  66. Hagberg H, Lundholm L. Rituximab, a chimaeric anti-CD20 monoclonal antibody, in the treatment of hairy cell leukaemia. Br J Haematol. 2001;115:609–11.

    Article  CAS  PubMed  Google Scholar 

  67. Nieva J, Bethel K, Saven A. Phase 2 study of rituximab in the treatment of cladribine-failed patients with hairy cell leukemia. Blood. 2003;102:810–3.

    Article  CAS  PubMed  Google Scholar 

  68. Forconi F, Toraldo F, Sozzi E, et al. Complete molecular remission induced by concomitant cladribine-rituximab treatment in a case of multi-resistant hairy cell leukemia. Leuk Lymphoma. 2007;48:2441–3.

    Article  PubMed  Google Scholar 

  69. Ravandi F, O’Brien S, Jorgensen J, et al. Phase 2 study of cladribine followed by rituximab in patients with hairy cell leukemia. Blood. 2011;118:3818–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Else M, Dearden CE, Matutes E, et al. Rituximab with pentostatin or cladribine: an effective combination treatment for hairy cell leukemia after disease recurrence. Leuk Lymphoma. 2011;52(Suppl 2):75–8.

    Article  CAS  PubMed  Google Scholar 

  71. Hoffman MA. Interferon-alpha is a very effective salvage therapy for patients with hairy cell leukemia relapsing after cladribine: a report of three cases. Med Oncol. 2011;28:1537–41.

    Article  CAS  PubMed  Google Scholar 

  72. Seymour JF, Estey EH, Keating MJ, et al. Response to interferon-alpha in patients with hairy cell leukemia relapsing after treatment with 2-chlorodeoxyadenosine. Leukemia. 1995;9:929–32.

    CAS  PubMed  Google Scholar 

  73. Burotto M, Stetler-Stevenson M, Arons E, et al. Bendamustine and rituximab in relapsed and refractory hairy cell leukemia. Clin Cancer Res. 2013;19:6313–21.

    Article  CAS  PubMed  Google Scholar 

  74. Kreitman RJ, Tallman MS, Robak T, et al. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol. 2012;30:1822–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Samuel J, Macip S, Dyer MJS. Efficacy of vemurafenib in hairy-cell leukemia. N Engl J Med. 2014;370:286–8.

    Article  CAS  PubMed  Google Scholar 

  76. Dietrich S, Pircher A, Endris V, et al. BRAF inhibition in hairy cell leukemia with low dose vemurafenib. Blood. 2016;127:2847–55.

    Article  CAS  PubMed  Google Scholar 

  77. Sivina M, Kreitman RJ, Arons E, et al. The bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) blocks hairy cell leukaemia survival, proliferation and B cell receptor signalling: a new therapeutic approach. Br J Haematol. 2014;166:177–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jansen J, Hermans J. Splenectomy in hairy cell leukemia: a retrospective multicenter analysis. Cancer. 1981;47:2066–76.

    Article  CAS  PubMed  Google Scholar 

  79. Kiyasu J, Shiratsuchi M, Ohtsuka R, et al. Achievement of complete remission of refractory hairy cell leukemia by rituximab progressing after allogeneic hematopoietic stem cell transplantation. Int J Hematol. 2009;89:403–5.

    Article  PubMed  Google Scholar 

  80. Zinzani PL, Bonifazi F, Pellegrini C, et al. Hairy cell leukemia: allogeneic transplantation could be an optimal option in selected patients. Clin Lymphoma Myeloma Leuk. 2012;12:287–9.

    Article  PubMed  Google Scholar 

  81. Baer MR, Ozer H, Foon KA. Interferon-alpha therapy during pregnancy in chronic myelogenous leukaemia and hairy cell leukaemia. Br J Haematol. 1992;81:167–9.

    Article  CAS  PubMed  Google Scholar 

  82. Stiles GM, Stanco LM, Saven A, et al. Splenectomy for hairy cell leukemia in pregnancy. J Perinatol. 1998;18:200–1.

    CAS  PubMed  Google Scholar 

  83. Adeniji BA, Fallas M, Incerpi M, et al. Laparoscopic splenectomy for hairy cell leukemia in pregnancy. Case Rep Med. 2010;2010.

    Google Scholar 

  84. Daver N, Nazha A, Kantarjian HM, et al. Treatment of hairy cell leukemia during pregnancy: are purine analogues and rituximab viable therapeutic options. Clin Lymphoma Myeloma Leuk. 2013;13:86–9.

    Article  CAS  PubMed  Google Scholar 

  85. Robak T. Hairy-cell leukemia variant: recent view on diagnosis, biology and treatment. Cancer Treat Rev. 2011;37:3–10.

    Article  PubMed  Google Scholar 

  86. Matutes E, Wotherspoon A, Catovsky D. The variant form of hairy-cell leukaemia. Best Pract Res Clin Haematol. 2003;16:41–56.

    Article  CAS  PubMed  Google Scholar 

  87. Narat S, Gandla J, Dogan A, et al. Successful treatment of hairy cell leukemia variant with rituximab. Leuk Lymphoma. 2005;46:1229–32.

    Article  CAS  PubMed  Google Scholar 

  88. Yoshida T, Mihara K, Sugihara S, et al. Splenectomy followed by administration of rituximab is useful to treat a patient with hairy cell leukemia-variant. Ann Hematol. 2013;92:711–3.

    Article  PubMed  Google Scholar 

  89. Kreitman RJ, Wilson W, Calvo KR, et al. Cladribine with immediate rituximab for the treatment of patients with variant hairy cell leukemia. Clin Cancer Res. 2013;19:6873–81.

    Article  CAS  PubMed  Google Scholar 

  90. Telek B, Batár P, Udvardy M. [Successful alemtuzumab treatment of a patient with atypical hairy cell leukaemia variant]. Orv Hetil. 2007;148:1805–1807.

    Google Scholar 

  91. Zinzani PL, Lauria F, Buzzi M, et al. Hairy cell leukemia variant: a morphologic, immunologic and clinical study of 7 cases. Haematologica. 1990;75:54–7.

    CAS  PubMed  Google Scholar 

  92. Busemann C, Schüler F, Krüger W, et al. Late extramedullary relapse after allogeneic transplantation in a case of variant hairy cell leukaemia. Bone Marrow Transplant. 2010;45:1117–8.

    Article  CAS  PubMed  Google Scholar 

  93. Fey MF, Buske C. Acute myeloblastic leukaemias in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24(Suppl 6):vi138–43.

    Article  PubMed  Google Scholar 

  94. Estey EH. Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol. 2013;88:318–27.

    Article  CAS  PubMed  Google Scholar 

  95. Burnett AK, Goldstone A, Hills RK, et al. Curability of patients with acute myeloid leukemia who did not undergo transplantation in first remission. J Clin Oncol. 2013;31:1293–301.

    Article  PubMed  Google Scholar 

  96. Roboz GJ. Current treatment of acute myeloid leukemia. Curr Opin Oncol. 2012;24:711–9.

    Article  CAS  PubMed  Google Scholar 

  97. Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115:453–74.

    Article  PubMed  CAS  Google Scholar 

  98. Löwenberg B, van Putten W, Theobald M, et al. Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med. 2003;349:743–52.

    Article  PubMed  Google Scholar 

  99. Pfirrmann M, Ehninger G, Thiede C, et al. Prediction of post-remission survival in acute myeloid leukaemia: a post-hoc analysis of the AML96 trial. Lancet Oncol. 2012;13:207–14.

    Article  PubMed  Google Scholar 

  100. Pabst T, Vellenga E, van Putten W, et al. Favorable effect of priming with granulocyte colony-stimulating factor in remission induction of acute myeloid leukemia restricted to dose escalation of cytarabine. Blood. 2012;119:5367–73.

    Article  CAS  PubMed  Google Scholar 

  101. Burnett AK, Hills RK, Milligan DW, et al. Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: results of the MRC AML12 trial. J Clin Oncol. 2010;28:586–95.

    Article  CAS  PubMed  Google Scholar 

  102. Koreth J, Schlenk R, Kopecky KJ, et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA. 2009;301:2349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stone RM. Acute myeloid leukemia in first remission: to choose transplantation or not? J Clin Oncol. 2013;31:1262–6.

    Article  PubMed  Google Scholar 

  104. Cornelissen JJ, van Putten WLJ, Verdonck LF, et al. Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: benefits for whom? Blood. 2007;109:3658–66.

    Article  CAS  PubMed  Google Scholar 

  105. Burnett AK, Goldstone AH, Stevens RM, et al. Randomised comparison of addition of autologous bone-marrow transplantation to intensive chemotherapy for acute myeloid leukaemia in first remission: results of MRC AML 10 trial. UK Medical Research Council Adult and Children’s Leukaemia Working Parties. Lancet (London). 1998;351:700–8.

    Article  CAS  Google Scholar 

  106. Zittoun RA, Mandelli F, Willemze R, et al. Autologous or allogeneic bone marrow transplantation compared with intensive chemotherapy in acute myelogenous leukemia. European Organization for Research and Treatment of Cancer (EORTC) and the Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto. N Engl J Med. 1995;332:217–23.

    Article  CAS  PubMed  Google Scholar 

  107. Mayer RJ, Davis RB, Schiffer CA, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med. 1994;331:896–903.

    Article  CAS  PubMed  Google Scholar 

  108. Basara N, Schulze A, Wedding U, et al. Early related or unrelated haematopoietic cell transplantation results in higher overall survival and leukaemia-free survival compared with conventional chemotherapy in high-risk acute myeloid leukaemia patients in first complete remission. Leukemia. 2009;23:635–40.

    Article  CAS  PubMed  Google Scholar 

  109. Bradstock KF, Matthews JP, Lowenthal RM, et al. A randomized trial of high-versus conventional-dose cytarabine in consolidation chemotherapy for adult de novo acute myeloid leukemia in first remission after induction therapy containing high-dose cytarabine. Blood. 2005;105:481–8.

    Article  CAS  PubMed  Google Scholar 

  110. Breems DA, Löwenberg B. Acute myeloid leukemia and the position of autologous stem cell transplantation. Semin Hematol. 2007;44:259–66.

    Article  PubMed  Google Scholar 

  111. Thomas X, Suciu S, Rio B, et al. Autologous stem cell transplantation after complete remission and first consolidation in acute myeloid leukemia patients aged 61–70 years: results of the prospective EORTC-GIMEMA AML-13 study. Haematologica. 2007;92:389–96.

    Article  CAS  PubMed  Google Scholar 

  112. Tombak A, Ucar MA, Akdeniz A, et al. The role of azacitidine in the treatment of elderly patients with AML-results of a retrospective multicenter study. Turk J Hematol. 2016;33:273–80.

    Article  CAS  Google Scholar 

  113. Ganetsky A. The role of decitabine for the treatment of acute myeloid leukemia. Ann Pharmacother. 2012;46:1511–7.

    Article  PubMed  CAS  Google Scholar 

  114. Sanz MA, Grimwade D, Tallman MS, et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2009;113:1875–91.

    Article  CAS  PubMed  Google Scholar 

  115. Fenaux P, Chastang C, Chevret S, et al. A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood. 1999;94:1192–200.

    Article  CAS  PubMed  Google Scholar 

  116. Sanz MA, Lo-Coco F. Modern approaches to treating acute promyelocytic leukemia. J Clin Oncol. 2011;29:495–503.

    Article  PubMed  Google Scholar 

  117. de Botton S, Fawaz A, Chevret S, et al. Autologous and allogeneic stem-cell transplantation as salvage treatment of acute promyelocytic leukemia initially treated with all-trans-retinoic acid: a retrospective analysis of the European acute promyelocytic leukemia group. J Clin Oncol. 2005;23:120–6.

    Article  PubMed  CAS  Google Scholar 

  118. Platzbecker U, Avvisati G, Cicconi L, et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia: final results of the randomized Italian-German APL0406 trial. J Clin Oncol. 2017;35:605–12.

    Article  CAS  PubMed  Google Scholar 

  119. Lo-Coco F, Avvisati G, Vignetti M, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369:111–21.

    Article  CAS  PubMed  Google Scholar 

  120. Buchmann I, Meyer RG, Mier W, et al. Myeloablative radioimmunotherapy in conditioning prior to haematological stem cell transplantation: closing the gap between benefit and toxicity? Eur J Nucl Med Mol Imaging. 2009;36:484–98.

    Article  PubMed  Google Scholar 

  121. Haro KJ, Scott AC, Scheinberg DA. Mechanisms of resistance to high and low linear energy transfer radiation in myeloid leukemia cells. Blood. 2012;120:2087–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Scheinberg DA, McDevitt MR. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm. 2011;4:306–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ferdinand R, Mitchell SA, Batson S, et al. Treatments for chronic myeloid leukemia: a qualitative systematic review. J Blood Med. 2012;3:51–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kalmanti L, Saussele S, Lauseker M, et al. Safety and efficacy of imatinib in CML over a period of 10 years: data from the randomized CML-study IV. Leukemia. 2015;29:1123–32.

    Article  CAS  PubMed  Google Scholar 

  125. Muller Lutz P, Carsten MT. Indikationen zur allogenen Stammzelltransplantation bei myeloischen Neoplasien. Dtsch Arztebl Int. 2015;112:262–70.

    CAS  PubMed  Google Scholar 

  126. Hehlmann R, Berger U, Pfirrmann M, et al. Drug treatment is superior to allografting as first-line therapy in chronic myeloid leukemia. Blood. 2007;109:4686–92.

    Article  CAS  PubMed  Google Scholar 

  127. Schwartz MA, Lovett DR, Redner A, et al. Dose-escalation trial of M195 labeled with iodine 131 for cytoreduction and marrow ablation in relapsed or refractory myeloid leukemias. J Clin Oncol. 1993;11:294–303.

    Article  CAS  PubMed  Google Scholar 

  128. Caron PC, Jurcic JG, Scott AM, et al. A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenicity. Blood. 1994;83:1760–8.

    Article  CAS  PubMed  Google Scholar 

  129. Appelbaum FR. Immunobiologic therapies for myelodysplastic syndrome. Best Pract Res Clin Haematol. 2004;17:653–61.

    CAS  PubMed  Google Scholar 

  130. Matthews DC. Immunotherapy in acute myelogenous leukemia and myelodysplastic syndrome. Leukemia. 1998;12(Suppl 1):S33–6.

    CAS  PubMed  Google Scholar 

  131. Burke JM, Caron PC, Papadopoulos EB, et al. Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced myeloid leukemias. Bone Marrow Transplant. 2003;32:549–56.

    Article  CAS  PubMed  Google Scholar 

  132. Sgouros G, Jureidini IM, Scott AM, et al. Bone marrow dosimetry: regional variability of marrow-localizing antibody. J Nucl Med. 1996;37:695–8.

    CAS  PubMed  Google Scholar 

  133. Sgouros G, Graham MC, Divgi CR, et al. Modeling and dosimetry of monoclonal antibody M195 (anti-CD33) in acute myelogenous leukemia. J Nucl Med. 1993;34:422–30.

    CAS  PubMed  Google Scholar 

  134. Jurcic JG, Caron PC, Nikula TK, et al. Radiolabeled anti-CD33 monoclonal antibody M195 for myeloid leukemias. Cancer Res. 1995;55:5908s–10s.

    CAS  PubMed  Google Scholar 

  135. Jurcic J, Divgi C, McDevitt M, et al. Potential for myeloablation with yttrium-90-HuM195 (anti-CD33) in myeloid leukemia [abstract]. J Clin Oncol. 2000;19:8a.

    Google Scholar 

  136. Jurcic JG, Larson SM, Sgouros G, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood. 2002;100:1233–9.

    Article  CAS  PubMed  Google Scholar 

  137. Rosenblat TL, McDevitt MR, Mulford DA, et al. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin Cancer Res. 2010;16:5303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sgouros G, Ballangrud AM, Jurcic JG, et al. Pharmacokinetics and dosimetry of an alpha-particle emitter labeled antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia. J Nucl Med. 1999;40:1935–46.

    CAS  PubMed  Google Scholar 

  139. Kolbert KS, Hamacher KA, Jurcic JG, et al. Parametric images of antibody pharmacokinetics in 213Bi-HuM195 therapy of leukemia. J Nucl Med. 2001;42:27–32.

    CAS  PubMed  Google Scholar 

  140. Friesen C, Roscher M, Hormann I, et al. Anti-CD33-antibodies labelled with the alpha-emitter Bismuth-213 kill CD33-positive acute myeloid leukaemia cells specifically by activation of caspases and break radio- and chemoresistance by inhibition of the anti-apoptotic proteins X-linked inhibitor of apoptosis protein and B-cell lymphoma-extra large. Eur J Cancer. 2013;49:2542–54.

    Article  CAS  PubMed  Google Scholar 

  141. Miederer M, McDevitt MR, Sgouros G, et al. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J Nucl Med. 2004;45:129–37.

    CAS  PubMed  Google Scholar 

  142. Maguire WF, McDevitt MR, Smith-Jones PM, et al. Efficient 1-step radiolabeling of monoclonal antibodies to high specific activity with 225Ac for α-particle radioimmunotherapy of cancer. J Nucl Med. 2014;55:1492–8.

    Article  CAS  PubMed  Google Scholar 

  143. Jurcic J, Rosenblat T, McDevitt M. Phase I trial of the targeted alpha-particle nano-generator actinium-225 225Ac-lintuzumab (anti-CD33; HuM195) in acute myeloid leukemia (AML). J Clin Oncol. 2011;29(Suppl):6516.

    Article  Google Scholar 

  144. Jurcic JG, Ravandi F, Pagel JM, et al. Phase I trial of α-particle therapy with actinium-225 225Ac-lintuzumab (anti-CD33) and low-dose cytarabine (LDAC) in older patients with untreated acute myeloid leukemia (AML). J Clin Oncol. 2015;33(Suppl):7050.

    Article  Google Scholar 

  145. Burnett AK, Milligan D, Prentice AG, et al. A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer. 2007;109:1114–24.

    Article  CAS  PubMed  Google Scholar 

  146. Berger M, Jurcic J, Scheinberg D. Efficacy of Ac-225-labeled anti-CD33 antibody in acute myeloid leukemia (AML) correlates with peripheral blast count. Proc 10th Int Symp Target Alpha Ther. Kanazawa; 2017. 22.

    Google Scholar 

  147. Atallah E, Berger M, Jurcic J, et al. A Phase 2 Study of Actinium-225 225Ac-lintuzumab in older patients with untreated acute myeloid leukemia (AML). J Med Imaging Radiat Sci. 2019;50:S37.

    Article  Google Scholar 

  148. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Garg R, Kevin JH, Dawicki W, Geoghegan EM, Ludwig DL, Dadachova E. 225Ac-labeled CD33-targeting antibody reverses resistance to Bcl-2 inhibitor venetoclax in acute myeloid leukemia models. Cancer Med. 2021;10:1128–1140.

    Google Scholar 

  150. Kersemans V, Cornelissen B, Minden MD, et al. Drug-resistant AML cells and primary AML specimens are killed by 111In-anti-CD33 monoclonal antibodies modified with nuclear localizing peptide sequences. J Nucl Med. 2008;49:1546–54.

    Article  CAS  PubMed  Google Scholar 

  151. Petrich T, Korkmaz Z, Krull D, et al. In vitro experimental 211At-anti-CD33 antibody therapy of leukaemia cells overcomes cellular resistance seen in vivo against gemtuzumab ozogamicin. Eur J Nucl Med Mol Imaging. 2010;37:851–61.

    Article  CAS  PubMed  Google Scholar 

  152. Matthews DC, Appelbaum FR, Eary JF, et al. Development of a marrow transplant regimen for acute leukemia using targeted hematopoietic irradiation delivered by 131I-labeled anti-CD45 antibody, combined with cyclophosphamide and total body irradiation. Blood. 1995;85:1122–31.

    Article  CAS  PubMed  Google Scholar 

  153. Buchmann I, Kull T, Glatting G, et al. A comparison of the biodistribution and biokinetics of 99mTc-anti-CD66 mAb BW 250/183 and 99mTc-anti-CD45 mAb YTH 24.5 with regard to suitability for myeloablative radioimmunotherapy. Eur J Nucl Med Mol Imaging. 2003;30:667–73.

    Article  CAS  PubMed  Google Scholar 

  154. Kletting P, Bunjes D, Reske S, et al. Improving anti-CD45 antibody radioimmuno-therapy using a physiologically based pharmacokinetic model. J Nucl Med. 2009;50:296–302.

    Article  PubMed  Google Scholar 

  155. Kletting P, Kull T, Bunjes D, et al. Optimal preloading in radioimmunotherapy with anti-cD45 antibody. Med Phys. 2011;38:2572–8.

    Article  CAS  PubMed  Google Scholar 

  156. Pagel JM, Kenoyer AL, Bäck T, et al. Anti-CD45 pretargeted radioimmunotherapy using bismuth-213: high rates of complete remission and long-term survival in a mouse myeloid leukemia xenograft model. Blood. 2011;118:703–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Orozco JJ, Zeller J, Pagel JM. Radiolabeled antibodies directed at CD45 for conditioning prior to allogeneic transplantation in acute myeloid leukemia and myelodysplastic syndrome. Ther Adv Hematol. 2012;3:5–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mawad R, Gooley TA, Rajendran JG, et al. Radiolabeled anti-CD45 antibody with reduced-intensity conditioning and allogeneic transplantation for younger patients with advanced acute myeloid leukemia or myelodysplastic syndrome. Biol Blood Marrow Transplant. 2014;20:1363–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Orozco JJ, Balkin ER, Gooley TA, et al. Anti-CD45 radioimmunotherapy with 90Y but not 177Lu is effective treatment in a syngeneic murine leukemia model. PLoS One. 2014 Dec 2;9(12):e113601.

    Google Scholar 

  160. Orozco JJ, Bäck T, Kenoyer A, et al. Anti-CD45 radioimmunotherapy using 211At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model. Blood. 2013;121:3759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Orozco JJ, Kenoyer A, Balkin ER, et al. Anti-CD45 radioimmunotherapy without TBI before BMT facilitates persistent haploidentical donor engraftment in a murine model. Blood. 2015;127:352–9.

    Article  PubMed  CAS  Google Scholar 

  162. www.ClinicalTrials.gov.

  163. Buchmann I, Schulze A, Sparber M, et al. Myeloablative radioimmunotherapy with Re-188-anti- CD66-mAb in paediatric leukaemia patients: a phase I-trial. J Nucl Med. 2002;43:37P.

    Google Scholar 

  164. Buchmann I, Bunjes D, Kotzerke J, et al. Myeloablative radioimmunotherapy with Re-188-anti-CD66-antibody for conditioning of high-risk leukemia patients prior to stem cell transplantation: biodistribution, biokinetics and immediate toxicities. Cancer Biother Radiopharm. 2002;17:151–63.

    Article  CAS  PubMed  Google Scholar 

  165. Bunjes D, Buchmann I, Duncker C, et al. Rhenium 188-labeled anti-CD66 (a, b, c, e) monoclonal antibody to intensify the conditioning regimen prior to stem cell transplantation for patients with high-risk acute myeloid leukemia or myelodysplastic syndrome: results of a phase I-II study. Blood. 2001;98:565–72.

    Article  CAS  PubMed  Google Scholar 

  166. Buchmann I, Bunjes D, Kotzerke J, et al. Myeloablative radioimmunotherapy with Re-188-anti-CD66-mAb before stem cell transplantation does not increase cytokine levels (abstract). J Nucl Med. 2002;43:314P.

    Google Scholar 

  167. Orchard K, Cooper M, Lewington V, et al. Targeted radiotherapy in haematopoietic stem cell transplantation: results of a phase I trial using an yttrium-90-labelled anti-CD66 murine monoclonal antibody demonstrating consistent BM targeting. Bone Marrow Transplant. 2006;37:45.

    Google Scholar 

  168. Camera L, Kinuya S, Garmestani K, et al. Evaluation of the serum stability and in vivo biodistribution of CHX-DTPA and other ligands for yttrium labeling of monoclonal antibodies. J Nucl Med. 1994;35:882–9.

    CAS  PubMed  Google Scholar 

  169. Neumaier B, Mottaghy FM, Buck AK, et al. 18F-immuno-PET: determination of anti-CD66 biodistribution in a patient with high-risk leukemia. Cancer Biother Radiopharm. 2008;23:819–824.

    Google Scholar 

  170. Schneider S, Strumpf A, Schetelig J, et al. Reduced-intensity conditioning combined with 188Rhenium radioimmunotherapy before allogeneic hematopoietic stem cell transplantation in elderly patients with acute myeloid leukemia: the role of in vivo T cell depletion. Biol Blood Marrow Transplant. 2015;21:1754–60.

    Article  PubMed  Google Scholar 

  171. Zereshkian A, Leyton JV, Cai Z, et al. The human polynucleotide kinase/phosphatase (hPNKP) inhibitor A12B4C3 radiosensitizes human myeloid leukemia cells to Auger electron-emitting anti-CD123 111In-NLS-7G3 radioimmunoconjugates. Nucl Med Biol. 2014;41:377–83.

    Article  CAS  PubMed  Google Scholar 

  172. Leyton JV, Williams B, Gao C, et al. MicroSPECT/CT imaging of primary human AML engrafted into the bone marrow and spleen of NOD/SCID mice using 111In-DTPA-NLS-CSL360 radioimmunoconjugates recognizing the CD123+/CD131 epitope expressed by leukemia stem cells. Leuk Res. 2014;38:1367–73.

    Article  CAS  PubMed  Google Scholar 

  173. Leyton JV, Hu M, Gao C, et al. Auger electron radioimmunotherapeutic agent specific for the CD123+/CD131- phenotype of the leukemia stem cell population. J Nucl Med. 2011;52:1465–73.

    Article  CAS  PubMed  Google Scholar 

  174. Zhang Z, Zhang M, Garmestani K, et al. Effective treatment of a murine model of adult T-cell leukemia using 211At-7G7/B6 and its combination with unmodified anti-Tac (daclizumab) directed toward CD25. Blood. 2006;108:1007–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dahle J, Borrebæk J, Jonasdottir TJ, et al. Targeted cancer therapy with a novel low-dose rate α-emitting radioimmunoconjugate. Blood. 2007;110:2049–56.

    Article  CAS  PubMed  Google Scholar 

  176. Jurcic JG. Targeted alpha-particle therapy for hematologic malignancies. J Med Imaging Radiat Sci. 2019;50:S53–7.

    Article  PubMed  Google Scholar 

  177. Dahle J, Bruland OS, Larsen RH. Relative biologic effects of low-dose-rate alpha-emitting 227Th-rituximab and beta-emitting 90Y-tiuexetan-ibritumomab versus external beam X-radiation. Int J Radiat Oncol Biol Phys. 2008;72:186–92.

    Article  CAS  PubMed  Google Scholar 

  178. Hagemann UB, Wickstroem K, Wang E, et al. In vitro and in vivo efficacy of a novel CD33-targeted thorium-227 conjugate for the treatment of acute myeloid leukemia. Mol Cancer Ther. 2016;15:2422–31.

    Article  CAS  PubMed  Google Scholar 

  179. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–48.

    Article  PubMed  Google Scholar 

  180. Moreau P, San Miguel J, Ludwig H, et al. Multiple myeloma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24(Suppl 6):vi133–7.

    Article  PubMed  Google Scholar 

  181. Fayers PM, Palumbo A, Hulin C, et al. Thalidomide for previously untreated elderly patients with multiple myeloma: meta-analysis of 1685 individual patient data from six randomized clinical trials. Blood. 2011;118:1239–48.

    Article  CAS  PubMed  Google Scholar 

  182. San Miguel JF, Schlag R, Khuageva NK, et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med. 2008;359:906–17.

    Article  CAS  PubMed  Google Scholar 

  183. Pönisch W, Mitrou PS, Merkle K, et al. Treatment of bendamustine and prednisone in patients with newly diagnosed multiple myeloma results in superior complete response rate, prolonged time to treatment failure and improved quality of life compared to treatment with melphalan and prednisone. J Cancer Res Clin Oncol. 2006;132:205–12.

    Article  PubMed  CAS  Google Scholar 

  184. Palumbo A, Falco P, Corradini P, et al. Melphalan, prednisone, and lenalidomide treatment for newly diagnosed myeloma: a report from the GIMEMA – Italian Multiple Myeloma Network. J Clin Oncol. 2007;25:4459–65.

    Article  CAS  PubMed  Google Scholar 

  185. Palumbo A, Hajek R, Delforge M. Continuous lenalidomide treatment for newly diagnosed multiple myeloma. N Engl J Med. 2012;366:1759–69.

    Article  CAS  PubMed  Google Scholar 

  186. Morgan GJ, Davies FE, Gregory WM, et al. Cyclophosphamide, thalidomide, and dexamethasone (CTD) as initial therapy for patients with multiple myeloma unsuitable for autologous transplantation. Blood. 2011;118:1231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Harousseau JL, Attal M, Avet-Loiseau H, et al. Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma: results of the IFM 2005-01 phase III trial. J Clin Oncol. 2010;28:4621–9.

    Article  CAS  PubMed  Google Scholar 

  188. Moreau P, Avet-Loiseau H, Harousseau JL, et al. Current trends in autologous stem-cell transplantation for myeloma in the era of novel therapies. J Clin Oncol. 2011;29:1898–906.

    Article  PubMed  Google Scholar 

  189. Cavo M, Tacchetti P, Patriarca F, et al. Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3. Lancet. 2010;376:2075–85.

    Article  CAS  PubMed  Google Scholar 

  190. Rosinol L, Oriol A, Teruel AI, et al. Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study. Blood. 2012;120:1589–96.

    Article  CAS  PubMed  Google Scholar 

  191. Moreau P, Avet-loiseau H, Facon T, et al. Bortezomib plus dexamethasone versus reduced-dose bortezomib, thalidomide plus dexamethasone as induction treatment before autologous stem cell transplantation in newly diagnosed multiple myeloma. Blood. 2012;118:5752–8.

    Article  CAS  Google Scholar 

  192. Moreau P, Facon T, Attal M, et al. Comparison of 200 mg/m2 melphalan and 8 Gy total body irradiation plus 140 mg/m2 melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myélome 9502 randomized trial. Blood. 2002;99:731–5.

    Article  CAS  PubMed  Google Scholar 

  193. Attal M, Harousseau J-L, Facon T, et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med. 2003;349:2495–502.

    Article  CAS  PubMed  Google Scholar 

  194. Sonneveld P, Schmidt-Wolf IGH, Van Der Holt B, et al. Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/GMMG-HD4 trial. J Clin Oncol. 2012;30:2946–55.

    Article  CAS  PubMed  Google Scholar 

  195. Stewart AK. Reduced-intensity allogeneic transplantation for myeloma: reality bites. Blood. 2009;113:3135–6.

    Article  CAS  PubMed  Google Scholar 

  196. Krishnan A, Vij R, Keller J, et al. Moving beyond autologous transplantation in multiple myeloma: consolidation, maintenance, allogeneic transplant, and immune therapy. Am Soc Clin Oncol Educ B. 2016;36:210–21.

    Article  Google Scholar 

  197. Palumbo A, Bringhen S, Rossi D, et al. Overall survival benefit for bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide (VMPT-VT) versus bortezomib-melphalan-prednisone (VMP) in newly diagnosed multiple myeloma patients. Blood. 2012;120(Suppl):200.

    Article  Google Scholar 

  198. Mateos M, Oriol A, Martínez-López J, et al. Maintenance therapy with bortezomib plus thalidomide or bortezomib plus prednisone in elderly multiple myeloma patients included in the Maintenance therapy with bortezomib plus thalidomide or bortezomib plus prednisone in elderly multiple myeloma patients. Blood. 2012;120:2581–8.

    Article  CAS  PubMed  Google Scholar 

  199. McCarthy PL, Owzar K, Hofmeister CC, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366:1770–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Attal M, Lauwers-Cances V, Marit G, et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366:1782–91.

    Article  CAS  PubMed  Google Scholar 

  201. Weber DM, Chen C, Niesvizky R, et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med. 2007;357:2133–42.

    Article  CAS  PubMed  Google Scholar 

  202. Attal M, Lauwers-Cances V, Marit G, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med. 2007;357:2123–32.

    Article  PubMed  Google Scholar 

  203. Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352:2487–98.

    Article  CAS  PubMed  Google Scholar 

  204. Orlowski RZ, Nagler A, Sonneveld P, et al. Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. J Clin Oncol. 2007;25:3892–901.

    Article  CAS  PubMed  Google Scholar 

  205. Moreau P. The future of therapy for relapsed/refractory multiple myeloma: emerging agents and novel treatment strategies. Semin Hematol. 2012;49:S33–46.

    Article  PubMed  Google Scholar 

  206. Garderet L, Iacobelli S, Moreau P, et al. Superiority of the triple combination of bortezomib-thalidomide- dexamethasone over the dual combination of thalidomide-dexamethasone in patients with multiple myeloma progressing or relapsing after autologous transplantation: the MMVAR/IFM 2005-04 randomized phase III trial from the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 2012;30:2475–82.

    Article  CAS  PubMed  Google Scholar 

  207. Lemieux E, Hulin C, Caillot D, et al. Autologous stem cell transplantation: an effective salvage therapy in multiple myeloma. Biol Blood Marrow Transplant. 2013;19:445–9.

    Article  CAS  PubMed  Google Scholar 

  208. Lonial S, Weiss BM, Usmani SZ, et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet. 2016;387:1551–60.

    Article  CAS  PubMed  Google Scholar 

  209. Richardson PG, Jagannath S, Moreau P, et al. Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: final phase 2 results from the randomised, open-label, phase 1b–2 dose-escalation study. Lancet Haematol. 2015;2:e516–27.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Moreau P, Masszi T, Grzasko N, et al. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;374:1621–34.

    Article  CAS  PubMed  Google Scholar 

  211. Richardson PG, Schlossman RL, Alsina M, et al. PANORAMA 2: panobinostat in combination with bortezomib and dexamethasone in patients with relapsed and bortezomib-refractory myeloma. Blood. 2013;122:2331–7.

    Article  CAS  PubMed  Google Scholar 

  212. Berenson JR, Hillner BE, Kyle RA, et al. American Society of Clinical Oncology clinical practice guidelines: the role of bisphosphonates in multiple myeloma. J Clin Oncol. 2002;20:3719–36.

    Article  PubMed  Google Scholar 

  213. Roodman GD. Skeletal imaging and management of bone disease. Hematology Am Soc Hematol Educ Program. 2008;313–319.

    Google Scholar 

  214. Kapadia SB. Multiple myeloma: a clinicopathologic study of 62 consecutively autopsied cases. Medicine (Baltimore). 1980;59:380–92.

    Article  CAS  Google Scholar 

  215. Lin P, Owens R, Tricot G, et al. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol. 2004;121:482–8.

    Article  PubMed  Google Scholar 

  216. Herrmann K, Schottelius M, Lapa C, et al. First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med. 2016;57:248–51.

    Article  CAS  PubMed  Google Scholar 

  217. Deaglio S, Mehta K, Malavasi F. Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk Res. 2001;25:1–12.

    Article  CAS  PubMed  Google Scholar 

  218. Jansen JHM, Boross P, Overdijk MB, et al. Daratumumab, a human CD38 antibody induces apoptosis of myeloma tumor cells via Fc receptor-mediated crosslinking. Blood. 2012;120:2974.

    Article  Google Scholar 

  219. Overdijk MB, Jansen JHM, Nederend M, et al. The therapeutic CD38 monoclonal antibody daratumumab induces programmed cell death via Fcγ receptor–mediated cross-linking. J Immunol. 2016;197:807–13.

    Article  CAS  PubMed  Google Scholar 

  220. Van De Donk NWCJ, Richardson PG, Malavasi F. CD38 antibodies in multiple myeloma: back to the future. Blood. 2018;131:13–29.

    Article  PubMed  CAS  Google Scholar 

  221. van der Veer MS, de Weers M, van Kessel B, et al. Towards effective immunotherapy of myeloma enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica. 2011;96:284–90.

    Article  PubMed  CAS  Google Scholar 

  222. Nijhof IS, Groen RWJ, Noort WA, et al. Preclinical evidence for the therapeutic potential of CD38-targeted immuno-chemotherapy in multiple myeloma patients refractory to lenalidomide and bortezomib. Clin Cancer Res. 2015;21.

    Google Scholar 

  223. Deckert J, Wetzel MC, Bartle LM, et al. SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies. Clin Cancer Res. 2014;20:4574–83.

    Article  CAS  PubMed  Google Scholar 

  224. Jiang H, Acharya C, An G, et al. SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia. 2016;30.

    Google Scholar 

  225. Stevenson F, Bell A, Cusack R, et al. Preliminary studies for an immunotherapeutic approach to the treatment of human myeloma using chimeric anti-CD38 antibody. Blood. 1991;77.

    Google Scholar 

  226. Ellis JH, Barber KA, Tutt A, et al. Engineered anti-CD38 monoclonal antibodies for immunotherapy of multiple myeloma. J Immunol. 1995;155.

    Google Scholar 

  227. Fumey W, Koenigsdorf J, Kunick V, et al. Nanobodies effectively modulate the enzymatic activity of CD38 and allow specific imaging of CD38+ tumors in mouse models in vivo. Sci Rep. 2017;7(1):14289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Li T, Qi S, Unger M, et al. Immuno-targeting the multifunctional CD38 using nanobody. Sci Rep. 2016;6:27055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. June CH, O’Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5.

    Article  CAS  PubMed  Google Scholar 

  230. Chu J, Deng Y, Benson DM, et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia. 2014;28:917–27.

    Article  CAS  PubMed  Google Scholar 

  231. Ali SA, Shi V, Maric I, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016;128.

    Google Scholar 

  232. Gogishvili T, Danhof S, Prommersberger S, et al. SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7+ normal lymphocytes. Blood. 2017;130.

    Google Scholar 

  233. Garfall AL, Stadtmauer EA, Hwang WT, et al. Anti-CD19 CAR t cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI. Insight. 2018;3.

    Google Scholar 

  234. Drent E, Poels R, Mulders MJ, et al. Feasibility of controlling CD38-CAR T cell activity with a Tet-on inducible CAR design. PLoS One. 2018;13.

    Google Scholar 

  235. Yoshida T, Mihara K, Takei Y, et al. All-trans retinoic acid enhances cytotoxic effect of T cells with an anti-CD38 chimeric antigen receptor in acute myeloid leukemia. Clin Transl Immunol. 2016;5.

    Google Scholar 

  236. Maude SL, Hucks GE, Seif AE, et al. The effect of pembrolizumab in combination with CD19-targeted chimeric antigen receptor (CAR) T cells in relapsed acute lymphoblastic leukemia (ALL). J Clin Oncol. 2017;35(Suppl):103.

    Article  Google Scholar 

  237. Couturier O, Faivre-Chauvet A, Filippovich IV, et al. Validation of 213Bi-alpha radioimmunotherapy for multiple myeloma. Clin Cancer Res. 1999;5:3165s–70s.

    CAS  PubMed  Google Scholar 

  238. Burton J, Mishina D, Cardillo T, et al. Epithelial mucin-1 (MUC1) expression and MA5 anti-MUC1 monoclonal antibody targeting in multiple myeloma. Clin Cancer Res. 1999;5:3065s–72s.

    CAS  PubMed  Google Scholar 

  239. Supiot S, Faivre-Chauvet A, Couturier O, et al. Comparison of the biologic effects of MA5 and B-B4 monoclonal antibody labeled with iodine-131 and bismuth-213 on multiple myeloma. Cancer. 2002;94:1202–9.

    Article  CAS  PubMed  Google Scholar 

  240. Supiot S, Gouard S, Charrier J, et al. Mechanisms of cell sensitization to alpha radioimmunotherapy by doxorubicin or paclitaxel in multiple myeloma cell lines. Clin Cancer Res. 2005;11:7047s–52s.

    Article  CAS  PubMed  Google Scholar 

  241. Josef K, Heidi M, Robert P, et al. Expression of CD66 in non-Hodgkin lymphomas and multiple myeloma. Eur J Haematol. 2010;85.

    Google Scholar 

  242. Orchard KH, Cooper M, Lewington V, et al. Targeted radiotherapy in the conditioning prior to haematopoietic stem cell transplantation: results of a phase I trial using an yttrium-90-labelled anti-CD66 murine monoclonal antibody demonstrating consistently high BM uptake. Biol Blood Marrow Transplant. 2006;12:10–1.

    Article  Google Scholar 

  243. Fasslrinner F, Stölzel F, Kramer M, et al. Radioimmunotherapy in combination with reduced-intensity conditioning for allogeneic hematopoietic cell transplantation in patients with advanced multiple myeloma. Biol Blood Marrow Transplant. 2020;26:691–7.

    Article  CAS  PubMed  Google Scholar 

  244. Bunjes D. 188Re-labeled anti-CD66 monoclonal antibody in stem cell transplantation for patients with high-risk acute myeloid leukemia. Leuk Lymphoma. 2002;43:2125–2131.

    Google Scholar 

  245. Mawad R, O’Donnell P, Gooley TA, et al. Hematopoietic bone marrow transplantation (BMT) for patients with high-risk acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), or myelodysplastic syndrome (MDS) using HLA-haploidentical related donors: a trial using radiolabeled anti-CD45 antibody combined with immunosuppression before and after BMT. Blood. 2012;120.

    Google Scholar 

  246. Orozco JJ. Anti-CD45 Radioimmunotherapy followed by haploidentical allogeneic hematopoietic cell transplantation for advanced acute leukemia or high-risk MDS. Blood. 2017;91.

    Google Scholar 

  247. Cassaday RD, Press OW, Pagel JM, et al. Safety and efficacy of escalating doses of 90Y-BC8-DOTA (anti-CD45) followed by carmustine, etoposide, cytarabine, and melphalan (BEAM) chemotherapy and autologous stem cell transplantation (ASCT) for high-risk lymphoma. Biol Blood Marrow Transplant. 2018;24:S251–2.

    Article  Google Scholar 

  248. Vo PT, Gooley T, Rajendran JG, et al. Safety and efficacy of yttrium-90-labeled anti-CD45 antibody (90Y-DOTA-BC8) followed by a standard reduced-intensity hematopoietic stem cell transplant (HCT) regimen for patients with refractory/relapsed leukemia or high-risk myelodysplastic syndrome (MDS). Blood. 2018;132:1018.

    Article  Google Scholar 

  249. Tuazon SA, Sandmaier BM, Orozco JJ, et al. A phase I trial of 90Y-BC8-DOTA (anti-CD45) monoclonal antibody in combination with fludarabine and TBI as conditioning for allogeneic peripheral blood stem cell transplant to treat high risk multiple myeloma. Blood. 2017;130:910.

    Article  Google Scholar 

  250. Nemecek ER, Hamlin DK, Fisher DR, et al. Biodistribution of yttrium-90-labeled anti-CD45 antibody in a nonhuman primate model. Clin Cancer Res. 2005;11.

    Google Scholar 

  251. Matesan M, Fisher DR, Wong R, et al. Biokinetics of radiolabeled monoclonal antibody BC8: differences in biodistribution and dosimetry among hematologic malignancies. J Nucl Med. 2020;61:1300–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Matthews DC, Appelbaum FR, Eary JF, et al. Phase I study of 131I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood. 1999;94.

    Google Scholar 

  253. Pagel JM, Appelbaum FR, Eary JF, et al. 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood. 2006;107.

    Google Scholar 

  254. Tuazon SA, Sandmaier BM, Gooley TA, et al. 90Y-labeled anti-CD45 antibody allogeneic hematopoietic cell transplantation for high-risk multiple myeloma. Bone Marrow Transplant. 2021;56.

    Google Scholar 

  255. Teiluf K, Seidl C, Blechert B, et al. α-Radioimmunotherapy with 213Bi-anti-CD38 immunoconjugates is effective in a mouse model of human multiple myeloma. Oncotarget. 2015;6:4692–703.

    Article  PubMed  Google Scholar 

  256. Chérel M, Gouard S, Gaschet J, et al. 213Bi radioimmunotherapy with an anti-mCD138 monoclonal antibody in a murine model of multiple myeloma. J Nucl Med. 2013;54:1597–1604.

    Google Scholar 

  257. Gouard S, Pallardy A, Gaschet J, et al. Comparative analysis of multiple myeloma treatment by CD138 antigen targeting with bismuth-213 and Melphalan chemotherapy. Nucl Med Biol. 2014;41(Suppl):e30–5.

    Article  CAS  PubMed  Google Scholar 

  258. Ménager J, Gorin J-B, Maurel C, et al. Combining α-radioimmunotherapy and adoptive T cell therapy to potentiate tumor destruction. PLoS One. 2015;10:e0130249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Dawicki W, Allen KJH, Jiao R, et al. Daratumumab-225Actinium conjugate demonstrates greatly enhanced antitumor activity against experimental multiple myeloma tumors. Oncoimmunology. 2019;8.

    Google Scholar 

  260. Nikula TK, McDevitt MR, Finn RD, et al. Alpha-emitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: pharmacokinetics, bioactivity, toxicity and chemistry. J Nucl Med. 1999;40.

    Google Scholar 

  261. Yong K, Brechbiel MW. Towards translation of 212Pb as a clinical therapeutic; Getting the lead in! Dalton Trans. 2011;40.

    Google Scholar 

  262. Chappell LL, Ma D, Milenic DE, et al. Synthesis and evaluation of novel bifunctional chelating agents based on 1,4,7,10-Tetraazacyclododecane-N,N′,N″,N‴-Tetraacetic acid for radiolabeling proteins. Nucl Med Biol. 2003;30:581–95.

    Article  CAS  PubMed  Google Scholar 

  263. Milenic DE, Garmestani K, Brady ED, et al. α-particle radioimmunotherapy of disseminated peritoneal disease using a 212Pb-labeled radioimmunoconjugate targeting HER2. Cancer Biother Radiopharm. 2005;20:557–68.

    Article  CAS  PubMed  Google Scholar 

  264. Boudousq V, Bobyk L, Busson M, et al. Comparison between internalizing anti-HER2 mAbs and non-internalizing anti-CEA mAbs in alpha-radioimmunotherapy of small volume peritoneal carcinomatosis using 212Pb. PLoS One. 2013;8.

    Google Scholar 

  265. Kasten BB, Gangrade A, Kim H, et al. 212Pb-labeled B7-H3-targeting antibody for pancreatic cancer therapy in mouse models. Nucl Med Biol. 2018;58.

    Google Scholar 

  266. Minnix M, Adhikarla V, Caserta E, et al. Comparison of CD38-targeted α- versus β-radionuclide therapy of disseminated multiple myeloma in an animal model. J Nucl Med. 2021;62:795–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Green DJ, Orgun NN, Jones JC, et al. A preclinical model of CD38-pretargeted radioimmunotherapy for plasma cell malignancies. Cancer Res. 2014;74:1179–89.

    Article  CAS  PubMed  Google Scholar 

  268. Green DJ, O’Steen S, Lin Y, et al. CD38-bispecific antibody pretargeted radioimmunotherapy for multiple myeloma and other B-cell malignancies. Blood. 2018;131.

    Google Scholar 

  269. Rousseau C, Ferrer L, Supiot S, et al. Dosimetry results suggest feasibility of radioimmunotherapy using anti-CD138 (B-B4) antibody in multiple myeloma patients. Tumour Biol. 2012;33:679–88.

    Article  CAS  PubMed  Google Scholar 

  270. Sauer S, Erba PA, Petrini M, et al. Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood. 2009;113:2265–74.

    Article  CAS  PubMed  Google Scholar 

  271. Erba PA, Sollini M, Orciuolo E, et al. Radioimmunotherapy with radretumab in patients with relapsed hematologic malignancies. J Nucl Med. 2012;53:922–7.

    Article  CAS  PubMed  Google Scholar 

  272. Halime Z, Frindel M, Camus N, et al. New synthesis of phenyl-isothiocyanate C-functionalised cyclams. Bioconjugation and 64Cu phenotypic PET imaging studies of multiple myeloma with the te2a derivative. Org Biomol Chem. 2015;13:11302–14.

    Article  CAS  PubMed  Google Scholar 

  273. Fichou N, Gouard S, Maurel C, et al. Single-dose anti-CD138 radioimmunotherapy: bismuth-213 is more efficient than lutetium-177 for treatment of multiple myeloma in a preclinical model. Front Med. 2015;2:76.

    Article  Google Scholar 

  274. Dispenzieri A, D’Souza A, Gertz MA, et al. A phase 1 trial of 90Y-Zevalin radioimmunotherapy with autologous stem cell transplant for multiple myeloma. Bone Marrow Transplant. 2017;52.

    Google Scholar 

  275. Robillard N, Avet-Loiseau H, Garand R, et al. CD20 is associated with a small mature plasma cell morphology and t(11;14) in multiple myeloma. Blood. 2003;102.

    Google Scholar 

  276. Kumar S, Kimlinger T, Morice W. Immunophenotyping in multiple myeloma and related plasma cell disorders. Best Pract Res Clin Haematol. 2010;23.

    Google Scholar 

  277. Yavasoglu I, Sargin G, Kadikoylu G, et al. Immunohistochemical evaluation of CD20 expression in patients with multiple myeloma. Rev Bras Hematol Hemoter. 2014;37.

    Google Scholar 

  278. Cremer FW, Goldschmidt H, Moos M, et al. Clonotypic B cells in the peripheral blood of patients with multiple myeloma [1] (multiple letters). Blood. 2001;97:2913–4.

    Article  CAS  PubMed  Google Scholar 

  279. Burger JA, Peled A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia. 2009;23.

    Google Scholar 

  280. Cojoc M, Peitzsch C, Trautmann F, et al. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther. 2013;6.

    Google Scholar 

  281. Demmer O, Gourni E, Schumacher U, et al. PET Imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem. 2011;6.

    Google Scholar 

  282. Gourni E, Demmer O, Schottelius M, et al. PET of CXCR4 expression by a 68Ga-labeled highly specific targeted contrast agent. J Nucl Med. 2011;52.

    Google Scholar 

  283. Philipp-Abbrederis K, Herrmann K, Knop S, et al. In vivo molecular imaging of chemokine receptor CXCR 4 expression in patients with advanced multiple myeloma. EMBO Mol Med. 2015;7.

    Google Scholar 

  284. Lapa C, Herrmann K, Schirbel A, et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed multiple myeloma. Theranostics. 2017;7.

    Google Scholar 

  285. Goel A, Dispenzieri A, Greipp PR, et al. PS-341-mediated selective targeting of multiple myeloma cells by synergistic increase in ionizing radiation-induced apoptosis. Exp Hematol. 2005;33:784–95.

    Article  CAS  PubMed  Google Scholar 

  286. Dispenzieri A, Wiseman GA, Lacy MQ, et al. A Phase II study of 153Sm-EDTMP and high-dose melphalan as a peripheral blood stem cell conditioning regimen in patients with multiple myeloma. Am J Hematol. 2010;85:409–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Abruzzese E, Iuliano F, Trawinska MM, et al. 153Sm: its use in multiple myeloma and report of a clinical experience. Expert Opin Investig Drugs. 2008;17:1379–1387.

    Google Scholar 

  288. Ansiaux R, Baudelet C, Jordan BF, et al. Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Clin Cancer Res. 2005;11:743–50.

    Article  CAS  PubMed  Google Scholar 

  289. Monzen H, Griffin RJ, Williams BW, et al. Study of arsenic trioxide-induced vascular shutdown and enhancement with radiation in solid tumor. Radiat Med. 2004;22:205–11.

    PubMed  Google Scholar 

  290. Berenson JR, Yellin O, Patel R, et al. A phase I study of samarium lexidronam/bortezomib combination therapy for the treatment of relapsed or refractory multiple myeloma. Clin Cancer Res. 2009;15:1069–75.

    Article  CAS  PubMed  Google Scholar 

  291. Döbert N, Martin H, Kranert WT, et al. Re-186 HEDP conditioning therapy in patients with advanced acute lymphoblastic leukemia before allogeneic bone marrow transplantation. Clin Nucl Med. 2003;28:738–42.

    Article  PubMed  Google Scholar 

  292. Bayouth JE, Macey DJ, Kasi LP, et al. Pharmacokinetics, dosimetry and toxicity of holmium-166-DOTMP for bone marrow ablation in multiple myeloma. J Nucl Med. 1995;36.

    Google Scholar 

  293. Rajendran JG, Eary JF, Bensinger W, et al. High-dose 166Ho-DOTMP in myeloablative treatment of multiple myeloma: pharmacokinetics, biodistribution, and absorbed dose estimation. J Nucl Med. 2002;43.

    Google Scholar 

  294. Giralt S, Bensinger W, Goodman M, et al. 166Ho-DOTMP plus melphalan followed by peripheral blood stem cell transplantation in patients with multiple myeloma: results of two phase 1/2 trials. Blood. 2003;102.

    Google Scholar 

  295. Terpos E, Kleber M, Engelhardt M, et al. European myeloma network guidelines for the management of multiple myeloma-related complications. Haematologica. 2015;100:1254–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola A. Erba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sollini, M., Bartoli, F., Galimberti, S., Boni, R., Erba, P.A. (2022). Radionuclide Therapy of Leukemias and Multiple Myeloma. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_48-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_48-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26067-9

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Radionuclide Therapy of Leukemias and Multiple Myeloma
    Published:
    09 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_48-2

  2. Original

    Radionuclide Therapy of Leukemias and Multiple Myeloma
    Published:
    30 September 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_48-1