Skip to main content

Encapsulation of Enzymes, Antibodies, and Bacteria

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

The development of biotechnology requires the immobilization of active biospecies such as enzymes or cells on solid substrates. Immobilization is mainly restricted to polymers, but inorganic substrates such as silica could offer some advantages: improved mechanical strength, chemical and thermal stability, and no swelling in aqueous or organic solvents. Sol–gel glasses can be formed at room temperature, and biomolecules can be added to the solution of precursors. Hydrolysis and condensation then lead to the formation of a porous silica network in which biomolecules remain trapped. In this chapter, the sol–gel routes to bioencapsulation are reviewed, including the encapsulation via the alkoxide route and the aqueous route. Doped silica sol–gel matrices have been also evaluated in order to improve the host properties as stabilization of biomolecules, reduction of electrostatic interactions, biocompatibility, and mechanical properties. Some examples of enzymes and antibodies immobilization in silica gel for biosensing and biocatalysis are described. Finally, miscellaneous applications as controlled drug delivery and encapsulating bacteria using silica gel are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aharonson N, Altstein M, Avidan G, Avnir D, Bronshtein A, Lewis A, Lieberman K, Ottolenghi M, Polevaya Y, Rottman C, Samuel J, Shalom S, Strinkowski A, Turnaiansky A. Recent developments in organically doped sol–gel sensors: a micron-scale probe; successful trapping of purified polyclonal antibodies; solutions to the dopant-leaching problem. Mater Res Soc Symp Proc. 1994;346:519–30.

    Article  Google Scholar 

  • Airoldi C, Monteiro Jr OAC. Chitosan–organosilane hybrids-syntheses, characterization, copper adsorption, and enzyme immobilization. J Appl Polym Sci. 2000;77:797–804.

    Article  Google Scholar 

  • Al-Saraj M, El-Nahal I, Baraka R. Bioaccumulation of some hazardous metals by sol–gel entrapped microorganisms. J Non-Cryst Solids. 1999;248:137–40.

    Article  Google Scholar 

  • Audebert P, Demaille C, Sanchez C. Electrochemical probing of the activity of glucose oxidase embedded in sol–gel matrices. Chem Mater. 1993;5:911–3.

    Article  Google Scholar 

  • Avnir D, Kaufman VR. Alcohol is an unnecessary additive in the silicon alkoxide sol–gel process. J Non-Cryst Solids. 1987;192:180–2.

    Article  Google Scholar 

  • Avnir D, Braun S, Lev O, Ottolenghi M. Enzymes and other proteins entrapped in sol–gel materials. Chem Mater. 1994;6:1605–14.

    Article  Google Scholar 

  • Barreau JY, da Costa JM, Desportes I, Livage J, Monjour L, Gentilini M. Fixation and immunoreactivity of parasitic protozoa in sol–gel matrices. CR Acad Sci Paris. 1994;317:653–7.

    Google Scholar 

  • Bergogne L, Fennouh S, Livage J, Roux C. Bioencapsulation in sol–gel glasses. Mater Res Soc SympProc. 1999;519:171–81.

    Article  Google Scholar 

  • Bhatia RB, Brinker CJ, Gupta AK, Singh AK. Aqueous sol–gel process for protein encapsulation. Chem Mater. 2000;12:2434–41.

    Article  Google Scholar 

  • Boninsegna S, Dal Toso R, Dal Monte R, Carturan G. Alginate microspheres loaded with animal cells and coated by a siliceous layer. J Sol-Gel Sci Technol. 2003;26:1151–7.

    Article  Google Scholar 

  • Böttcher H, Kallies KH, Haufe H. Model investigations of controlled release of bioactive compounds from thin metal oxides layers. J Sol-Gel Sci Technol. 1997;8:651–4.

    Google Scholar 

  • Böttcher H, Slowik P, Süss W. Sol–gel carrier systems for controlled drug delivery. J Sol-Gel Sci Technol. 1998;13:277–81.

    Article  Google Scholar 

  • Brasack I, Böttcher H, Hempel U. Biocompatibility of modified silica–protein composite layers. J Sol-Gel Sci Technol. 2000;19:479–82.

    Article  Google Scholar 

  • Braun S, Rappoport S, Zusman R, Avnir D, Ottolenghi M. Biochemically active sol–gel glasses: the trapping of enzymes. Mater Lett. 1990;10:1–8.

    Article  Google Scholar 

  • Braun S, Shtelzer S, Rappoport S, Avnir D, Ottolenghi M. Biocatalysis by sol–gel entrapped enzymes. J Non-Cryst Solids. 1992;147–148:739–43.

    Article  Google Scholar 

  • Brennan JD, Hartman JS, Ilnicki EI, Rakic M. Fluorescence and NMR characterization and biomolecule entrapment studies of sol–gel-derived organic–inorganic composite materials formed by sonication of precursors. Chem Mater. 1999;11:1853–64.

    Article  Google Scholar 

  • Brennan JD, Benjamin D, DiBattista E, Gulcev MD. Using sugar and amino acid additives to stabilize enzymes within sol–gel derived silica. Chem Mater. 2003;15:737–45.

    Article  Google Scholar 

  • Bronshtein A, Aharonson N, Avnir D, Turniansky A, Altstein M. Sol–gel matrices doped with atrazine antibodies: Atrazine binding properties. Chem Mater. 1997;9:2632–9.

    Article  Google Scholar 

  • Bronshtein A, Aharonson N, Turniansky A, Altstein M. Sol–gel-based immunoaffinity chromatography: Application to nitroaromatic compounds. Chem Mater. 2000;12:2050–8.

    Article  Google Scholar 

  • Cappelletti EM, Carturan G, Piovan A. US Patent: 5,998,162; 1999.

    Google Scholar 

  • Carturan G, Campostrini R, Diré S, Scardi V, de Alteris E. Inorganic gels for immobilization of biocatalysts: inclusion of invertase-active whole cells of yeast (Saccharomyces cerevisiae) into thin layers of SiO2 gel deposited on glass sheets. J Mol Catal. 1989;57:L13–6.

    Article  Google Scholar 

  • Carturan G, Pagini E, Campostrini R, Ceccato R. Hybrid gels as host matrices of perfumed essences. J Sol-Gel Sci Technol. 1997;8:1115–9.

    Google Scholar 

  • Carturan G, Muraca M, Dal Monte R. US Patent: US 6, 214,593 B1; 2001.

    Google Scholar 

  • Chen Z, Samuelson LA, Akkara J, Kaplan DL, Gao H, Kumar J, Marx KA, Tripathy SK. Sol–gel encapsulated light-transducing protein phycoerythrin: a new biomaterial. Chem Mater. 1995;7:1779–83.

    Article  Google Scholar 

  • Chen Q, Kenausis L, Heller A. Stability of oxidases immobilized in silica gels. J Am Chem Soc. 1998;120:4582–5.

    Article  Google Scholar 

  • Chen X, Cheng G, Dong S. Amperometric tyrosinase biosensor based on a sol–gel-derived titanium oxide–copolymer composite matrix for detection of phenolic compounds. Analyst. 2001;126:1728–132.

    Article  Google Scholar 

  • Cho G, Moon IS, Lee JS. Preparation and characterization of a-amylase immobilized inorganic/organic hybrid membrane using chitosan as a dispersant in the sol–gel process. Chem Lett. 1997;26:577–8.

    Google Scholar 

  • Cho EJ, Tao Z, Tehan EC, Bright FV. Multianalyte pin-printed biosensor arrays based on proteindoped xerogels. Anal Chem. 2002;74:6177–84.

    Article  Google Scholar 

  • Coiffier A, Coradin T, Raux C, Bouvet OMM, Livage J. Sol–gel encapsulation of bacteria: a comparison between alkoxide and aqueous routes. J Mater Chern. 2001;11:2039–44.

    Article  Google Scholar 

  • Collinson MM, Howells AR. Sol–gel and electrochemistry. Anal Chem. 2000;72:702A–9A.

    Google Scholar 

  • Conroy JFT, Power ME, Martin J, Earp B, Hostica B, Daitch CE, Norris PM. Cells in Sol–Gels I: A cytocompatible route for the production of macroporous silica gels. J Sol-Gel Sci Technol. 2000;18:269–83.

    Article  Google Scholar 

  • Constantin S, Freitag R, Solignac D, Sayah A, Gijs MAM. Utilization of the sol–gel technique for the development of novel stationary phases for capillary electrochromatography on a chip. Sensors Actuators B Chem. 2001;78:267–72.

    Article  Google Scholar 

  • Coradin T, Mercey E, Lisnard L, Livage J. Design of silica-coated microcapsules for bioencapsulation. Chem Commun. 2001;2496–7.

    Google Scholar 

  • Correia da Costa JM, Desportes-Livage I, Sampaio Silva ML, Monjour L, Livage J. Toward a sol–gel modified Elisa test. Res Rev Parasitol. 1996;56:225–7.

    Google Scholar 

  • Cosnier S, Senillou A, Grätzel M, Comte P, Vlachopoulos N, Renault NJ, Martelet C. A glucose biosensor based on enzyme entrapment within polypyrrole films electrodeposited on mesoporous titanium dioxide. J Electroanal Chem. 1999;469:176–81.

    Article  Google Scholar 

  • Dave BC, Dunn B, Valentine JS, Zink JI. Sol–gel encapsulation methods for biosensors. Anal Chem. 1994;66:1120A–7A.

    Article  Google Scholar 

  • Dickey FH. Specific adsorption. J Phys Chem. 1955;59:695–707.

    Article  Google Scholar 

  • Doong RA, Tsai HC. Immobilization and characterization of sol–gel-encapsulated acetyl-cholinesterase fiber-optic biosensor. Anal Chim Acta. 2001;434:239–46.

    Article  Google Scholar 

  • Eggers DK, Valentine JS. Crowding and hydration effects on protein conformation: a study with sol–gel encapsulated proteins. J Mol Bioi. 2001a;314:911–22.

    Article  Google Scholar 

  • Eggers DK, Valentine JS. Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci. 2001b;10:250–61.

    Article  Google Scholar 

  • Ellerby LM, Nishida CR, Nishida F, Yamanaka SA, Dunn B, Valentine JS, Zink JI. Encapsulation of proteins in transparent porous silicate glasses prepared by the sol–gel method. Science. 1992;255:1113–5.

    Article  Google Scholar 

  • Fennouh S, Guyon S, Jourdat C, Livage J, Roux C. Encapsulation of bacteria in silica gels. CR Acad Sci IIc. 1999;2:625–30.

    Google Scholar 

  • Fennouh S, Guyon S, Livage J, Roux C. Sol–gel entrapment of Escherichia coli. J Sol-Gel Sci Technol. 2000;19:647–9.

    Article  Google Scholar 

  • Ferrer ML, del Monte F, Levy D. A novel and simple alcohol-free sol–gel route for encapsulation of labile proteins. Chem Mater. 2002;14:3619–21.

    Article  Google Scholar 

  • Finnie KS, Bartlett JR, Woolfrey JL. Encapsulation of sulfate-reducing bacteria in a silica host. J Mater Chem. 2000;10:1099–101.

    Article  Google Scholar 

  • Gill I, Ballesteros A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol–gel polymers: an efficient and generic approach. J Am Chem Soc. 1998;120:8587–98.

    Article  Google Scholar 

  • Gill I. Bio-doped nanocomposite polymers: sol–gel bioencapsulates. Chem Mater. 2001;13:3404–21.

    Article  Google Scholar 

  • Gill I, Ballesteros A. Bioencapsulation within synthetic polymers (Part 1): sol–gel encapsulated biologicals. Trends in BioTech. 2000;18:282–96.

    Article  Google Scholar 

  • Glezer V, Lev O. Sol–gel vanadium pentoxide glucose biosensor. J Am Chem Soc. 1993;115:2533–4.

    Article  Google Scholar 

  • Gulcev MD, Goring GLG, Rakic M, Brennan JD. Reagentless pH-based biosensing using a fluorescently-labelled dextran co-entrapped with a hydrolytic enzyme in sol–gel derived nanocomposite films. Anal Chim Acta. 2002;457:47–59.

    Article  Google Scholar 

  • Gun J, Lev O. Sol–gel derived, ferrocenyl-modified silicate–graphite composite electrode: wiring of glucose oxidase. Anal Chim Acta. 1996;336:95–106.

    Article  Google Scholar 

  • Gun J, Tsionsky M, Lev O. Voltammetric studies of composite ceramic carbon working electrodes. Anal Chim Acta. 1994;294:261–70.

    Article  Google Scholar 

  • Haddow DB, Kelly JM, James PF, Short RD, Scutt AM, Rawsterne R, Kothari S. Cell response to sol–gel derived titania coatings. J Mater Chem. 2000;10:2795–801.

    Article  Google Scholar 

  • Hall SR, Walsh D, Green D, Oreffo R, Mann S. A novel route to highly porous bioactive silica gels. J Mater Chem. 2003;13:186–90.

    Article  Google Scholar 

  • Heichal-Segal O, Rappoport S, Braun S. Immobilization in alginate–silicate sol–gel matrix protects beta-glucosidase against thermal and chemical denaturation: enzyme stabilization for use in e.g. wine aroma improvement. Bio/Technology. 1995;13:798–800.

    Article  Google Scholar 

  • Heller J, Heller A. Loss of activity or gain in stability of oxidases upon their immobilization in hydrated silica: Significance of the electrostatic interactions of surface Arginine residues at the entrances of the reaction channels. J Am Chem Soc. 1998;120:4586–90.

    Article  Google Scholar 

  • Hench LL, Wheeler DL, Greenspan DC. Molecular control of bioactivity in sol–gel glasses. J Sol-Gel Sci Technol. 1998;13:245–50.

    Article  Google Scholar 

  • Hock B, Dankwardt A, Kramer K, Marx A. Immunochemical techniques: Antibody production for pesticide analysis. A review. Anal Chim Acta. 1995;311:393–405.

    Article  Google Scholar 

  • Jin W, Brennan JD. Properties and applications of proteins encapsulated within sol–gel derived materials. Anal Chim Acta. 2002;461:1–36.

    Article  Google Scholar 

  • Johnson P, Whateley TL. On the use of polymerizing silica gel systems for the immobilization of trypsin. J Colloid Interface Sci. 1971;37:557–63.

    Article  Google Scholar 

  • Jolivet JP. Metal oxide Chemistry and Synthesis. Chichester: Wiley; 2000.

    Google Scholar 

  • Jordan JD, Dunbar RA, Bright FV. Aerosol-generated sol–gel-derived thin films as biosensing platforms. Anal Chim Acta. 1996;332:83–91.

    Article  Google Scholar 

  • Kato M, Sakai-Kato K, Matsumoto N, Toyo’oka T. A protein-encapsulation technique by the sol–gel method for the preparation of monolithic columns for capillary electrochromatography. Anal Chem. 2002;74:1915–21.

    Article  Google Scholar 

  • Keeling-Tucker T, Rakic M, Spong C, Brennan JD. Controlling the materials properties and biological activity of lipase within sol–gel derived bioglasses via organosilane and polymer doping. Chem Mater. 2000;12:3695–704.

    Article  Google Scholar 

  • Kim MA, Lee WY. Amperometric phenol biosensor based on sol–gel silicate/Nafion composite film. Anal Chim Acta. 2003;479:143–50.

    Article  Google Scholar 

  • Kortesuo P, Ahola M, Karlsson S, Kangasniemi I, Yli-Urpo A, Kiesvaara J. Silica xerogel as an implantable carrier for controlled drug delivery—evaluation of drug distribution and tissue effects after implantation. Biomaterials. 2000;21:193–8.

    Article  Google Scholar 

  • Kros A, Gerritsen M, Sprakel VSI, Sommerdjik NAJM, Jansen JA, Nolte RJM. Silica-based hybrid materials as biocompatible coatings for glucose sensors. Sensors Actuators B Chem. 2001;81:68–75.

    Article  Google Scholar 

  • Kuncova G, Sivel M. Lipase immobilized in organic–inorganic matrices. J Sol-Gel Sci Technol. 1997;8:667–71.

    Google Scholar 

  • Kurokawa Y, Ohta H. Preparation of cellulose-hydrous titanium oxide composite fibre entrapped with glucose oxidase. Biotechn Techn. 1993;7:5–8.

    Article  Google Scholar 

  • Kurokawa Y, Sana T, Ohta H, Nakagawa Y. Immobilization of enzyme onto cellulose–titanium oxide composite fiber. Biotechnol Bioeng. 1993;42:394–7.

    Article  Google Scholar 

  • Kuselman L, Losefzon BK, Lev O. Disposable tube detectors for water analysis. Anal Chim Acta. 1992;256:65–8.

    Article  Google Scholar 

  • Lan EH, Dunn B, Zink JI. Sol–gel encapsulated anti-trinitrotoluene antibodies in immunoassays for TNT. Chem Mater. 2000;12:1874–8.

    Article  Google Scholar 

  • Lev O, Wu Z, Bharathi S, Glezer V, Modestov A, Gun J, Rabinovich L, Sampath S. Sol–gel materials in electrochemistry. Chem Mater. 1997;9:2354–75.

    Article  Google Scholar 

  • Li J, Chia LS, Goh NK, Tan SN. Renewable silica sol–gel derived carbon-composite-based glucose biosensor. J Electroanal Chem. 1999;460:234–41.

    Article  Google Scholar 

  • Lin J, Brown CW. Sol–gel glass as a matrix for chemical and biochemical sensing. Trends Anal Chem. 1997;16:200–11.

    Article  Google Scholar 

  • Liu DM, Chen JW. Encapsulation of protein molecules in transparent porous silica matrices via an aqueous colloidal sol–gel process. Acta Mater. 1999;47:4535–44.

    Article  Google Scholar 

  • Liu Z, Liu B, Zhang M, Kong J, Deng J. Al2O3 sol–gel derived amperometric biosensor for glucose. Anal Chim Acta. 1999;392:135–41.

    Article  Google Scholar 

  • Liu Z, Deng J, Li D. A new tyrosinase biosensor based on tailoring the porosity of Al2O3 sol–gel to co-immobilise tyrosinase and the mediator. Anal Chim Acta. 2000a;407:87–96.

    Article  Google Scholar 

  • Liu Z, Liu B, Kong J, Deng J. Probing trace phenols based on mediator-free alumina sol–gel derived tyrosinase biosensor. Anal Chem. 2000b;72:4707–12.

    Article  Google Scholar 

  • Livage J, Roux C, Da Costa JM, Desportes I, Quinson JY. Immunoassays in sol–gel matrices. J Sol-Gel Sci Technol. 1996;7:45–51.

    Article  Google Scholar 

  • Livage J, Coradin T, Roux C. Encapsulation of biomolecules in silica gels. J Phys Condens Matter. 2001;13:R673–91.

    Article  Google Scholar 

  • McCraith BD, McDough C, McEvoy AK, Butler T, O’Keeffe G, Murphy V. Optical chemical sensors based on sol–gel materials: recent advances and critical issues. J Sol-Gel Sci Technol. 1997;8:1053–61.

    Article  Google Scholar 

  • Miao Y, Tan SN. Amperometric hydrogen peroxide biosensor with silica sol–gel/chitosan film as immobilization matrix. Anal Chim Acta. 2001;437:87–93.

    Article  Google Scholar 

  • Miller JM, Dunn B, Valentine JS, Zink JI. Synthesis conditions for encapsulating cytochrome c and catalase in SiO2 sol–gel materials. J Non-Cryst Solids. 1996;202:279–89.

    Article  Google Scholar 

  • Mizutani F, Yabuki S, Sawaguchi T, Hirata Y, Sato Y, Iijima S. Use of a siloxane polymer for the preparation of amperometric sensors: O2 and NO sensors and enzyme sensors. Sensors Actuators B Chem. 2001;76:489–93.

    Article  Google Scholar 

  • Nagata R, Yokoyama K, Clark SA, Karube I. A glucose sensor fabricated by the screen printing technique. Biosens Bioelectron. 1995;10:261–7.

    Article  Google Scholar 

  • Nassif N, Bouvet O, Rager MN, Roux C, Coradin T, Livage J. Living bacteria in silica gels. Nat Mater. 2002;1:42–4.

    Article  Google Scholar 

  • Nassif N, Roux C, Coradin T, Rager MN, Bouvet OMM, Livage J. A sol–gel matrix to preserve the viability of encapsulated bacteria. J Mater Chem. 2003;13:203–8.

    Article  Google Scholar 

  • Niu J, Lee JY. Reagentless mediated biosensors based on polyelectrolyte and sol–gel derived silica matrix. Sensors Actuators B Chem. 2002;82:250–8.

    Article  Google Scholar 

  • Park SB, You JO, Park HY, Haam SJ, Kim WS. A novel pH-sensitive membrane from chitosan–TEOS IPN; preparation and its drug permeation characteristics. Biomaterials. 2001;22:323–30.

    Article  Google Scholar 

  • Pierre A, Buisson P. Influence of the porous texture of silica gels on the enzymatic activity of lipases in esterification reactions. J Mol Catal B. 2001;11:639–47.

    Article  Google Scholar 

  • Premkumar JR, Lev O, Rosen R, Belkin S. Encapsulation of luminous recombinant E. coli in sol–gel silicate films. Adv. Dent Mater. 2001;13:1773–5.

    Google Scholar 

  • Premkumar JR, Rosen R, Belkin S, Lev O. Sol–gel luminescence biosensors: Encapsulation of recombinant E. coli reporters in thick silicate films. Anal Chim Acta. 2002a;462:11–23.

    Article  Google Scholar 

  • Premkumar JR, Sagi E, Rosen R, Belkin S, Modestov AD, Lev O. Fluorescent bacteria encapsulated in sol–gel derived silicate films. Chem Mater. 2002b;14:2676–86.

    Article  Google Scholar 

  • Przybyt M, Bialkowka B. Enzyme electrodes constructed on basis of oxygen electrode with oxidases immobilised by sol–gel technique. Mater Sci. 2002;20:63–70.

    Google Scholar 

  • Pulido-Tofino P, Barrero-Moreno JM, Pérez-Conde MC. Sol–gel glass doped with isoproturon antibody as selective support for the development of a flow-through fluoroimmunosensor. Anal Chim Acta. 2001;429:337–45.

    Article  Google Scholar 

  • Raff J, Soltmann U, Matys S, Selenska-Pobell S, Böttcher H, Pompe W. Biosorption of uranium and copper by biocers. Chem Mater. 2003;15:240–4.

    Article  Google Scholar 

  • Ramila A, Del Real RP, Marcos R, Horcajada P, Vallet-Regi M. Drug release and in vitro assays of bioactive polymer/glass matrices. J Sol-Gel Sci Technol. 2003;26:1195–8.

    Article  Google Scholar 

  • Reetz MT. Entrapment of biocatalysts in hydrophobic sol–gel materials for use in organic chemistry. Adv Mater. 1997;9:943–54.

    Article  Google Scholar 

  • Reetz MT, Zonta A, Simplekamp J. Efficient heterogeneous biocatalysts by entrapment of lipases in hydrophobic sol–gel materials. Angew Chem Int Ed Engl. 1995;34:301–3.

    Article  Google Scholar 

  • Reetz MT, Zonta A, Simplekamp J, Rufinska A, Tesche B. Characterization of hydrophobic sol–gel materials containing entrapped lipases. J Sol–Gel Sci Technolol. 1996a;7:35–43.

    Article  Google Scholar 

  • Reetz MT, Zonta A, Simplekamp J, Könen W. In-situ fixation of lipase-containing hydrophobic sol–gel materials on sintered glass: highly efficient heterogeneous biocatalysts. Chem Commun. 1996b;1397–8.

    Google Scholar 

  • Reetz MT, Zonta A, Vijayakrishnan V, Schimossek K. Entrapment of lipases in hydrophobic magnetite-containing sol–gel materials: magnetic separation of heterogeneous biocatalysts. J Mol Catal A. 1998;134:251–8.

    Article  Google Scholar 

  • Ren L, Tsuru K, Hayakawa S, Osaka A. Synthesis and characterization of gelatin–siloxane hybrids derived through sol–gel procedure. J Sol-Gel Sci Technol. 2001;21:115–21.

    Article  Google Scholar 

  • Ren L, Tsuru K, Hayakawa S, Osaka A. Novel approach to fabricate porous gelatin–siloxane hybrids for bone tissue engineering. Biomaterials. 2002;23:4765–73.

    Article  Google Scholar 

  • Rietti-Shati M, Ronen D, Mandelbaum RT. Atrazine degradation by Pseudomonas strain ADP entrapped in sol–gel glass. J Sol-Gel Sci Technol. 1996;7:77–9.

    Article  Google Scholar 

  • Rupcich N, Goldstein A, Brennan JD. Optimization of sol–gel formulations and surface treatments for the development of pin-printed protein microarrays. Chem Mater. 2003;15:1803–11.

    Article  Google Scholar 

  • Sagi E, Rever N, Rosen R, Bartolome AJ, Premkumar JR, Ulber R, Lev O, Scheper T, Belkin S. Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains. Sensors Actuators B Chem. 2003;90:2–8.

    Article  Google Scholar 

  • Sakai S, Ono T, Ijima H, Kawakami K. Synthesis and transport characterization of alginate/aminopropyl-silicate/aginate microcapsule: application to bioartificial pancreas. Biomaterials. 2001;22:2827–34.

    Article  Google Scholar 

  • Sakai S, Ono T, Ijima H, Kawakami K. Alginate/aminopropyl-silicate/aginate membrane immunoisolatability and insulin secretion of encapsulated islets. Biotechnol Prog. 2002;18:401–3.

    Article  Google Scholar 

  • Sampath S, Lev O. Inert metal-modified, composite ceramic–carbon, amperometric biosensors: Renewable, controlled reactive layer. Anal Chem. 1996;68:2015–21.

    Article  Google Scholar 

  • Sampath S, Pankratov I, Gun J, Lev O. Sol–gel derived ceramic carbon-enzyme electrodes. J Sol-Gel Sci Technol. 1996;7:123–8.

    Article  Google Scholar 

  • Schmid RD, Verger R. Lipases: Interfacial enzymes with attractive applications. Angew Chem Int Ed. 1998;37:1608–33.

    Article  Google Scholar 

  • Schuleit M, Luisi PL. Enzyme immobilization in silica-hardened organogels. Biotechnol Bioeng. 2001;72:249–53.

    Article  Google Scholar 

  • Shtelzer S, Braun S. An optical biosensor based upon glucose oxidase immobilized in sol–gel silicate matrix. Biotechnol Appl Biochem. 1994;19:293–305.

    Google Scholar 

  • Sieminska L, Zerda TW. Diffusion of steroids from sol–gel glass. J Phys Chem. 1996;100:4591–7.

    Article  Google Scholar 

  • Turniansky A, Avnir D, Bronshtein A, Aharonson N, Altstein M. Sol–gel entrapment of monoclonal anti-atrazine antibodies. J Sol-Gel Sci Technol. 1996;7:135–43.

    Article  Google Scholar 

  • Vazquez-Lira JC, Camacho-Frias E, Pena-Aivarez A, Vera-Avila LE. Preparation and characterization of a sol–gel immunosorbent doped with 2,4-d antibodies. Chem Mater. 2003;15:154–61.

    Article  Google Scholar 

  • Wang J. Sol–gel materials for electrochemical biosensors. Anal Chim Acta. 1999;399:21–7.

    Article  Google Scholar 

  • Wang B, Dong S. Sol–gel-derived amperometric biosensor for hydrogen peroxide based on methylene green incorporated in Nafion film. Talanta. 2000;51:565–72.

    Article  Google Scholar 

  • Wang R, Narang U, Prassad PN, Bright FV. Affinity of antifluorescein antibodies encapsulated within a transparent sol–gel glass. Anal Chem. 1993;65:2671–5.

    Article  Google Scholar 

  • Wang J, Park DS, Pamidi PVA. Tailoring the macroporosity and performance of sol–gel derived carbon composite glucose sensors. J Electroanal Chem. 1997;434:185–9.

    Article  Google Scholar 

  • Wang B, Li B, Deng Q, Dong S. Amperometric glucose biosensor based on sol–gel organic–inorganic hybrid material. Anal Chem. 1998;70:3170–4.

    Article  Google Scholar 

  • Watzke HJ, Dieschbourg C. Novel silica-biopolymer nanocomposites: the silica sol–gel process in biopolymer organogels. Adv Coli Interf Sci. 1994;50:1–14.

    Article  Google Scholar 

  • Weetall HH. Retention of bacteriorhodopsin activity in dried sol–gel glass. Biosens Bioelectron. 1996;11:327–33.

    Article  Google Scholar 

  • Weetall HH, Robertson B, Cullin D, Brown J, Walch M. Bacteriorhodopsin immobilized in sol–gel glass. Biochim Biophys Acta. 1993;1142:211–3.

    Article  Google Scholar 

  • Willner I, Katz E. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed. 2000;39:1181–218.

    Google Scholar 

  • Wilson R, Turner APF. Glucose oxidase: an ideal enzyme. Biosens Bioelectron. 1992;7:165–85.

    Article  Google Scholar 

  • Wu S, Ellerby LM, Cohan JS, Dunn B, El-Sayed MA, Valentine JS, Zink JI. Bacteriorhodopsin encapsulated in transparent sol–gel glass: a new biomaterial. Chem Mater. 1993;5:115–20.

    Article  Google Scholar 

  • Yamanaka SA, Nishida F, Ellerby LM, Nishida CR, Dunn B, Valentine JS, Zink JI. Enzymatic activity of glucose oxidase encapsulated in transparent glass by the sol–gel method. Chem Mater. 1992;4:495–7.

    Article  Google Scholar 

  • Zheng L, Flora K, Brennan JD. Improving the performance of a sol–gel-entrapped metal-binding protein by maximizing protein thermal stability before entrapment. Chem Mater. 1998;10:3974–83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Livage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Livage, J., Coradin, T. (2017). Encapsulation of Enzymes, Antibodies, and Bacteria. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19454-7

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics