Skip to main content

Cerebral Plasticity and Functional Reorganization in Children with Congenital Brain Lesions

  • Living reference work entry
  • First Online:
Neonatology

Abstract

Mechanisms of cerebral plasticity are more powerful during development. This however does not necessarily lead to better outcomes in case of early brain injuries, as opposed to later ones, due to the complex interaction of brain plasticity, vulnerability, and maturation. A deep understanding of the mechanisms underlying the reorganization of brain functions after early damage will give us the opportunity to target the intervention in terms of timing, quality, and duration so to maximize the processes of adaptive plasticity and limit the maladaptive ones. New techniques of advanced brain mapping are providing a unique opportunity to explore this matter in humans, both in the acute and post-acute phase, during the early stages of development, and in the chronic phase, when the plastic reorganization has for a large part already occurred. We will review here the current knowledge on the main mechanisms of plastic reorganization in subjects with congenital lesions, with particular reference to the language, sensorimotor, and visual systems. The main differences with the effects of later injuries will be underlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ajina S, Pestilli F, Rokem A, Kennard C, Bridge H (2015) Human blindsight is mediated by an intact geniculo-extrastriate pathway. Elife 4:e08935

    Google Scholar 

  • Anderson V (2005) Functional plasticity or vulnerability after early brain injury? Pediatrics 116:1374–1382

    Article  PubMed  Google Scholar 

  • Anderson V et al (2009) Childhood brain insult: can age at insult help us predict outcome? Brain 132:45–56

    Article  PubMed  Google Scholar 

  • Anderson V, Spencer-Smith M, Wood A (2011) Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain 134:2197–2221

    Article  PubMed  Google Scholar 

  • Arroyo DA, Feller MB (2016) Spatiotemporal features of retinal waves instruct the wiring of the visual circuitry. Front Neural Circuits 10:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballantyne AO, Spilkin AM, Hesselink J, Trauner DA (2008) Plasticity in the developing brain: intellectual, language and academic functions in children with ischaemic perinatal stroke. Brain 131:2975–2985

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett KC, Ashley R, Strait DL, Kraus N (2013) Art and science: how musical training shapes the brain. Front Psychol 4:713

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates E et al (2001) Differential effects of unilateral lesions on language production in children and adults. Brain Lang 79:223–265

    Article  CAS  PubMed  Google Scholar 

  • Berker EA (1986) Translation of Broca’s 1865 report. Arch Neurol 43:1065

    Article  CAS  PubMed  Google Scholar 

  • de Bode S, Smets L, Mathern GW, Dubinsky S (2015) Complex syntax in the isolated right hemisphere: receptive grammatical abilities after cerebral hemispherectomy. Epilepsy Behav 51:33–39

    Article  PubMed  Google Scholar 

  • Dennis M et al (2013) Age, plasticity, and homeostasis in childhood brain disorders. Neurosci Biobehav Rev 37:2760–2773

    Article  PubMed  Google Scholar 

  • Dinomais M, Groeschel S, Staudt M, Krägeloh-Mann I, Wilke M (2012) Relationship between functional connectivity and sensory impairment: red flag or red herring? Hum Brain Mapp 33:628–638

    Article  PubMed  Google Scholar 

  • Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E (1995) Increased cortical representation of the fingers of the left hand in string players. Science 270:305–307

    Article  CAS  PubMed  Google Scholar 

  • Eyre JA et al (2007) Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system? Ann Neurol 62:493–503

    Article  PubMed  Google Scholar 

  • Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vis Res 34:709–720

    Article  CAS  PubMed  Google Scholar 

  • Finger S (1988) The ‘Kennard effect’ before Kennard: the early history of age and brain lesions. Arch Neurol 45:1136

    Article  CAS  PubMed  Google Scholar 

  • Fiori S, Guzzetta A (2015) Plasticity following early-life brain injury: insights from quantitative MRI. Semin Perinatol 39:141–146

    Article  PubMed  Google Scholar 

  • Guzzetta A et al (2007) Reorganisation of the somatosensory system after early brain damage. Clin Neurophysiol 118:1110–1121

    Article  CAS  PubMed  Google Scholar 

  • Guzzetta A et al (2008) Language organisation in left perinatal stroke. Neuropediatrics 39:157–163

    Article  CAS  PubMed  Google Scholar 

  • Guzzetta A et al (2010) Hand movements at 3 months predict later hemiplegia in term infants with neonatal cerebral infarction. Dev Med Child Neurol 52:767–772

    Article  PubMed  Google Scholar 

  • Guzzetta A, Fiori S, Scelfo D, Conti E, Bancale A (2013) Reorganization of visual fields after periventricular haemorrhagic infarction: potentials and limitations. Developmental Medicine & Child Neurology 55:23–26

    Article  Google Scholar 

  • Hertz-Pannier L et al (1997) Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology 48:1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Ilves P et al (2014) Different plasticity patterns of language function in children with perinatal and childhood stroke. J Child Neurol 29:756–764

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston MV et al (2009) Plasticity and injury in the developing brain. Brain Dev 31:1–10

    Article  PubMed  Google Scholar 

  • Klein D, Mok K, Chen J-K, Watkins KE (2014) Age of language learning shapes brain structure: a cortical thickness study of bilingual and monolingual individuals. Brain Lang 131:20–24

    Article  PubMed  Google Scholar 

  • Kolb B, Gibb R (2014) Searching for the principles of brain plasticity and behavior. Cortex 58:251–260

    Article  PubMed  Google Scholar 

  • Kolk A, Ennok M, Laugesaar R, Kaldoja M-L, Talvik T (2011) Long-term cognitive outcomes after pediatric stroke. Pediatr Neurol 44:101–109

    Article  PubMed  Google Scholar 

  • Leh SE, Johansen-Berg H, Ptito A (2006) Unconscious vision: new insights into the neuronal correlate of blindsight using diffusion tractography. Brain 129:1822–1832

    Article  PubMed  Google Scholar 

  • Lewis TL, Maurer D (2005) Multiple sensitive periods in human visual development: evidence from visually deprived children. Dev Psychobiol 46:163–183

    Article  PubMed  Google Scholar 

  • Li P, Legault J, Litcofsky KA (2014) Neuroplasticity as a function of second language learning: anatomical changes in the human brain. Cortex 58:301–324

    Article  PubMed  Google Scholar 

  • Lidzba K, Staudt M, Wilke M, Krägeloh-Mann I (2006) Visuospatial deficits in patients with early left-hemispheric lesions and functional reorganization of language: consequence of lesion or reorganization? Neuropsychologia 44:1088–1094

    Article  PubMed  Google Scholar 

  • Lidzba K, Wilke M, Staudt M, Krägeloh-Mann I (2009) Early plasticity versus early vulnerability: the problem of heterogeneous lesion types. Brain 132:e128. author reply e129

    Article  PubMed  Google Scholar 

  • Liégeois F, Cross JH, Polkey C, Harkness W, Vargha-Khadem F (2008) Language after hemispherectomy in childhood: contributions from memory and intelligence. Neuropsychologia 46:3101–3107

    Article  PubMed  Google Scholar 

  • Mowery TM, Kotak VC, Sanes DH (2016) The onset of visual experience gates auditory cortex critical periods. Nat Commun 7:10416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller R-A et al (1998) Brain organization of language after early unilateral lesion: a PET study. Brain Lang 62:422–451

    Article  PubMed  Google Scholar 

  • Papadelis C, Leonardelli E, Staudt M, Braun C (2012) Can magnetoencephalography track the afferent information flow along white matter thalamo-cortical fibers? NeuroImage 60:1092–1105

    Article  PubMed  Google Scholar 

  • Rasmussen T, Milner B (1977) The role of early left-brain injury in determining lateralization of cerebral speech functions. Ann N Y Acad Sci 299:355–369

    Article  CAS  PubMed  Google Scholar 

  • Rose S, Guzzetta A, Pannek K, Boyd R (2011) MRI structural connectivity, disruption of primary sensorimotor pathways, and hand function in cerebral palsy. Brain Connect 1:309–316

    Article  PubMed  Google Scholar 

  • Seghier ML et al (2004) Combination of event-related fMRI and diffusion tensor imaging in an infant with perinatal stroke. NeuroImage 21:463–472

    Article  PubMed  Google Scholar 

  • Seghier ML et al (2005) Visual recovery after perinatal stroke evidenced by functional and diffusion MRI: case report. BMC Neurol 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Staudt M (2002) Right-hemispheric organization of language following early left-sided brain lesions: functional MRI topography. NeuroImage 16:954–967

    Article  PubMed  Google Scholar 

  • Staudt M et al (2004) Reorganization in congenital hemiparesis acquired at different gestational ages. Ann Neurol 56:854–863

    Article  PubMed  Google Scholar 

  • Staudt M et al (2006a) Extensive peri-lesional connectivity in congenital hemiparesis. Neurology 66:771

    Article  CAS  PubMed  Google Scholar 

  • Staudt M et al (2006b) Developing somatosensory projections bypass periventricular brain lesions. Neurology 67:522–525

    Article  CAS  PubMed  Google Scholar 

  • Sweatt JD (2016) Neural plasticity and behavior – sixty years of conceptual advances. J Neurochem 139(Suppl 2):179–199

    Article  CAS  PubMed  Google Scholar 

  • Szaflarski JP et al (2014) Age at stroke determines post-stroke language lateralization. Restor Neurol Neurosci 32:733–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tinelli F et al (2013) Blindsight in children with congenital and acquired cerebral lesions. Cortex 49:1636–1647

    Article  PubMed  Google Scholar 

  • Vaquero L et al (2016) Structural neuroplasticity in expert pianists depends on the age of musical training onset. NeuroImage 126:106–119

    Article  PubMed  Google Scholar 

  • Zsoter A, Pieper T, Kudernatsch M, Staudt M (2012) Predicting hand function after hemispherotomy: TMS versus fMRI in hemispheric polymicrogyria. Epilepsia 53:e98–e101

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana Marchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Marchi, V., Guzzetta, A., Cioni, G. (2017). Cerebral Plasticity and Functional Reorganization in Children with Congenital Brain Lesions. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-18159-2_166-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18159-2_166-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18159-2

  • Online ISBN: 978-3-319-18159-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics