Skip to main content

Fourier Transforms in Clifford Analysis

Operator Theory
  • 267 Accesses

Abstract

This chapter gives an overview of the theory of hypercomplex Fourier transforms, which are generalized Fourier transforms in the context of Clifford analysis. The emphasis lies on three different approaches that are currently receiving a lot of attention: the eigenfunction approach, the generalized roots of −1 approach, and the characters of the spin group approach. The eigenfunction approach prescribes complex eigenvalues to the L 2 basis consisting of the Clifford–Hermite functions and is therefore strongly connected to the representation theory of the Lie superalgebra \(\mathfrak{o}\mathfrak{s}\mathfrak{p}(1\vert 2)\). The roots of −1 approach consists of replacing all occurrences of the imaginary unit in the classical Fourier transform by roots of −1 belonging to a suitable Clifford algebra. The resulting transforms are often used in engineering. The third approach uses characters to generalize the classical Fourier transform to the setting of the group S pi n (4), resp. S pi n (6) for application in image processing. For each approach, precise definitions of the transforms under consideration are given, important special cases are highlighted, and a summary of the most important results is given. Also directions for further research are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahri, M., Hitzer, E.: Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra Cl3 , 0. Adv. Appl. Clifford Algebr. 16, 41–61 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batard, T., Berthier, M., Saint-Jean, C.: Clifford-Fourier transform for color image processing. In: Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing for Engineering and Computer Science, pp. 135–161. Springer, New York (2010)

    Chapter  Google Scholar 

  3. Batard, T., Berthier, M.: Clifford-Fourier transform and spinor representation of images. In: Hitzer, E., Sangwine, S. (eds.) Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics, pp. 177–196. Birkhäuser, Basel (2013)

    Chapter  Google Scholar 

  4. Batard, T., Berthier, M.: Spinor fourier transform for image processing. IEEE J. Sel. Top. Signal Process. 7, 605–613 (2013)

    Article  Google Scholar 

  5. Bayro-Corrochano, E., Trujillo, N., Naranjo, M.: Quaternion Fourier descriptors for the preprocessing and recognition of spoken words using images of spatiotemporal representations. J. Math. Imaging Vision 28, 179–190 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bernstein, S.: Wavelets in Clifford analysis. In: Colombo, F. Sabadini, Shapiro, M. (eds.) Operator Theory (in press)

    Google Scholar 

  7. Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis.Research Notes in Mathematics, vol. 76. Pitman Advanced Publishing Program, Boston (1982)

    Google Scholar 

  8. Brackx, F., De Schepper, N., Sommen, F.: The Clifford-Fourier transform. J. Fourier Anal. Appl. 11, 669–681 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brackx, F., De Schepper, N., Sommen, F.: The two-dimensional Clifford-Fourier transform. J. Math. Imaging Vision 26, 5–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brackx, F., De Schepper, N., Sommen, F.: The Fourier transform in Clifford analysis. Adv. Imag. Elect. Phys. 156, 55–203 (2008)

    Article  Google Scholar 

  11. Brackx, F., De Schepper, N., Sommen, F.: The Clifford-Fourier integral kernel in even dimensional Euclidean space. J. Math. Anal. Appl. 365, 718–728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bujack, R., De Bie, H., De Schepper, N., Scheuermann, G.: Convolution products for hypercomplex Fourier transforms. J. Math. Imaging Vision. 48 (2014), 606-624. (to appear)

    Google Scholar 

  13. Bujack, R., Scheuermann, G., Hitzer, E.: A general geometric Fourier transform. In: Hitzer, E., Sangwine, S. (eds.) Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics, pp. 155–176. Birkhäuser, Basel (2013)

    Chapter  Google Scholar 

  14. Bujack, R., Scheuermann, G., Hitzer, E.: A general geometric Fourier transform convolution theorem. Adv. Appl. Clifford Alg. 23, 15–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bülow, T., Sommer, G.: Hypercomplex signals—a novel extension of the analytic signal to the multidimensional case. IEEE Trans. Signal Process. 49, 2844–2852 (2001)

    Article  MathSciNet  Google Scholar 

  16. Cerejeiras, P., Kaehler, U.: Monogenic signal theory. In: Colombo, F., Sabadini, I., Shapiro, M. (eds.) Operator Theory (in press)

    Google Scholar 

  17. Coulembier, K., De Bie, H., Sommen, F.: Orthogonality of the Hermite polynomials in superspace and Mehler type formulae. Proc. Lond. Math. Soc. 103, 786–825 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. De Bie, H.: Clifford algebras, Fourier transforms and quantum mechanics. Math. Methods Appl. Sci. 35, 2198–2228 (2012)

    Article  MATH  Google Scholar 

  19. De Bie, H., De Schepper, N., Sommen, F.: The class of Clifford-Fourier transforms. J. Fourier Anal. Appl. 17, 1198–1231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. De Bie, H., De Schepper, N.: The fractional Clifford-Fourier transform. Complex Anal. Oper. Theory 6, 1047–1067 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. De Bie, H., Ørsted, B., Somberg, P., Souček, V.: Dunkl operators and a family of realizations of \(\mathfrak{o}\mathfrak{s}\mathfrak{p}(1\vert 2)\). Trans. Am. Math. Soc. 364, 3875–3902 (2012)

    Article  MATH  Google Scholar 

  22. De Bie, H., Ørsted, B., Somberg, P., Souček, V.: The Clifford deformation of the Hermite semigroup. SIGMA 9(010), 22 (2013)

    Google Scholar 

  23. De Bie, H., Xu, Y.: On the Clifford-Fourier transform. Int. Math. Res. Not. IMRN 2011(22), 5123–5163 (2011)

    MATH  Google Scholar 

  24. de Jeu, M.F.E.: The Dunkl transform. Invent. Math. 113, 147–162 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. Mathematics and Its Applications, vol. 53. Kluwer Academic, Dordrecht (1992)

    Google Scholar 

  26. Delsuc, M.A.: Spectral representation of 2D NMR spectra by hypercomplex numbers. J. Magn. Reson. 77, 119–124 (1988)

    Google Scholar 

  27. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. Morgan Kaufmann, Burlington (2007)

    Google Scholar 

  28. Ebling, J., Scheuermann, G.: Clifford Fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. 11, 469–479 (2005)

    Article  Google Scholar 

  29. Ell, T.A.: Hypercomplex spectral transformations. Ph.D. Thesis. University of Minnesota, University Microfilms International Number 9231031 (June 1992)

    Google Scholar 

  30. Ell, T.A.: Quaternion Fourier transform: re-tooling image and signal processing analysis. In: Hitzer, E., Sangwine, S. (eds.) Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics, pp. 3–14. Birkhäuser, Basel (2013)

    Chapter  Google Scholar 

  31. Ell, T.A., Sangwine, S.J.: Hypercomplex Fourier transforms of color images, IEEE Trans. Image Process. 16, 22–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ernst, R.R., Bodenhausen, G., Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. International Series of Monographs on Chemistry. Oxford University Press, Oxford (1987)

    Google Scholar 

  33. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic, New York (1980)

    MATH  Google Scholar 

  34. Guerlebeck, K., Sproessig, W.: Quaternionic analysis: general aspects. In: Colombo, F., Sabadini, I., Shapiro, M. (eds.) Operator Theory (in press)

    Google Scholar 

  35. Hitzer, E., Ablamowicz, R.: Geometric roots of − 1 in Clifford algebras \(\mathcal{C}l_{p,q}\) with p + q ≤ 4. Adv. Appl. Clifford Algebr. 21, 121–144 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hitzer, E., Bahri, M.: Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n=2(mod4) and n=3(mod4). Adv. Appl. Clifford Algebr. 18, 715–736 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hitzer, E., Helmstetter, J., Ablamowicz, R.: Square roots of − 1 in real Clifford algebras. In: Hitzer, E., Sangwine, S. (eds.) Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics, pp. 123–154. Birkhäuser, Basel (2013)

    Chapter  Google Scholar 

  38. Hitzer, E., Sangwine, S.J.: The orthogonal 2d planes split of quaternions and steerable quaternion fourier transformations. In: Hitzer, E., Sangwine, S. (eds.) Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics, pp. 15–40. Birkhäuser, Basel (2013)

    Chapter  Google Scholar 

  39. Kou, K., Qian, T.: Shannon sampling in the Clifford analysis setting. Z. Anal. Anwendungen 24, 853–870 (2005)

    Article  MathSciNet  Google Scholar 

  40. Kou, K., Qian, T.: The Paley-Wiener theorem in \(\mathbb{R}^{n}\) with the Clifford analysis setting. J. Funct. Anal. 189, 227–241 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, C., McIntosh, A., Qian, T.: Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces. Rev. Math. Iberoam. 10, 665–721 (1994)

    MathSciNet  MATH  Google Scholar 

  42. Mustard, D.: Fractional convolution. J. Austral. Math. Soc. Ser. B 40, 257–265 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ozaktas, H., Zalevsky, Z., Kutay, M.: The Fractional Fourier Transform. Wiley, Chichester (2001)

    Google Scholar 

  44. Pei, S-C., Ding, J-J., Chang, J-H.: Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT. IEEE Trans. Signal Process. 49, 2783–2797 (2001)

    Article  MathSciNet  Google Scholar 

  45. Rösler, M.: A positive radial product formula for the Dunkl kernel. Trans. Am. Math. Soc. 355, 2413–2438 (2003)

    Article  MATH  Google Scholar 

  46. Sangwine, S.J.: Color image edge detector based on quaternion convolution. Electron. Lett. 34, 969–971 (1998)

    Article  Google Scholar 

  47. Sangwine, S.J.: Fourier transforms of color images using quaternion, or hypercomplex, numbers. Electron. Lett. 32, 1979–1980 (1996)

    Article  Google Scholar 

  48. Sangwine, S.J., Ell, T.A.: The discrete Fourier transform of a color image. In: Blackledge, J.M., Turner, M.J. (eds.) Image Processing II Mathematical Methods, Algorithms and Applications, pp. 430–441. Horwood Publishing, Chichester (2000)

    Google Scholar 

  49. Sommen, F.: Hypercomplex Fourier and Laplace transforms. I. Illinois J. Math. 26, 332–352 (1982)

    MathSciNet  MATH  Google Scholar 

  50. Sommen, F.: Special functions in Clifford analysis and axial symmetry. J. Math. Anal. Appl. 130(1), 110–133 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sommen, F., De Schepper, H.: Introductory Clifford analysis. In: Colombo, F., Sabadini, I., Shapiro, M. (eds.) Operator Theory (in press)

    Google Scholar 

  52. Soucek, V.: Representation theory in Clifford Analysis. In: Colombo, F., Sabadini, I., Shapiro, M. (eds.) Operator Theory (in press)

    Google Scholar 

  53. Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 32. Princeton University Press, Princeton (1971)

    Google Scholar 

  54. Szegő, G.: Orthogonal Polynomials. vol. 23, 4th edn. American Mathematical Society, Colloquium Publications, Providence (1975)

    Google Scholar 

  55. Thangavelu, S., Xu, Y.: Convolution operator and maximal function for the Dunkl transform. J. Anal. Math. 97, 25–55 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik De Bie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this entry

Cite this entry

Bie, H.D. (2014). Fourier Transforms in Clifford Analysis. In: Alpay, D. (eds) Operator Theory. Springer, Basel. https://doi.org/10.1007/978-3-0348-0692-3_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0692-3_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Basel

  • Online ISBN: 978-3-0348-0692-3

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Fourier Transforms in Clifford Analysis
    Published:
    07 April 2015

    DOI: https://doi.org/10.1007/978-3-0348-0692-3_12-2

  2. Original

    Fourier Transforms in Clifford Analysis
    Published:
    07 November 2014

    DOI: https://doi.org/10.1007/978-3-0348-0692-3_12-1