Skip to main content

Adapting Cartilage Restoration to the Patellofemoral Compartment

  • Reference work entry
  • First Online:
Knee Arthroscopy and Knee Preservation Surgery

Abstract

Treating symptomatic chondral and osteochondral defects of the patellofemoral joint poses a challenge to surgeons due to the limited healing potential of articular cartilage as well as complex surface morphology of the patella and trochlea. In addition, the patellofemoral joint is further complicated by high compressive and shear stresses combined with variable alignment and patella tracking between patients. Initial management for most lesions consists of nonoperative measures, but surgery should be considered for symptomatic patients who fail nonoperative treatment. Surgical procedures can be divided into marrow stimulation (microfracture and drilling), cell-based (autologous chondrocyte implantation and particulated juvenile articular cartilage), and osteochondral (osteochondral allograft transplantation and osteochondral autograft transfer). In addition, fixation of chondral or osteochondral fragments can be considered following traumatic injuries and dislocations. Goals of surgical management include recreating the articular surface architecture and improving the biomechanical environment through addressing associated conditions such as malalignment and patellar instability. Historically, outcomes following patellofemoral cartilage restoration have generally been inferior to tibiofemoral outcomes, but newer studies have demonstrated improved results that rival those of the tibiofemoral compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 971.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Figueroa D, Calvo R, Vaisman A, Carrasco MA, Moraga C, Delgado I. Knee chondral lesions: incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy. 2007;23(3):312–5.

    Article  PubMed  Google Scholar 

  2. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects 1,000 knee arthroscopies. Arthroscopy. 2002;18(7):730–4.

    Article  PubMed  Google Scholar 

  3. Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee. 2007;14:177–82.

    Article  CAS  PubMed  Google Scholar 

  4. Nomura E, Inoue M, Kurimura M. Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy. 2003;19(7):717–21.

    Article  PubMed  Google Scholar 

  5. Salonen EE, Magga T, Sillanpaa PJ, Kiekara T, Maenpaa H, Mattila V. Traumatic patellar dislocation and cartilage injury: a follow-up study of long-term cartilage deterioration. Am J Sports Med. 2017;45(6):1376–82.

    Article  PubMed  Google Scholar 

  6. Vollnberg B, Koehlitz T, Jung T, Scheffler S, Hoburg A, Khandker D. Prevalence of cartilage lesions and early osteoarthritis in patients with patellar dislocation. Eur Radiol. 2012;22(11):2347–56.

    Article  PubMed  Google Scholar 

  7. Peters TA, McLean ID. Osteochondritis dissecans of the patellofemoral joint. Am J Sports Med. 2000;28(1):63–6.

    Article  CAS  PubMed  Google Scholar 

  8. Brophy RH, Wojahn RD, Lamplot JD. Cartilage restoration techniques for the patellofemoral joint. J Am Acad Orthop Surg. 2017;25:321–9.

    Article  PubMed  Google Scholar 

  9. Figeuroa D, Rodriguez RC, Donoso R, Espinoza J, Vaisman A, Yanez C. High-grade patellar defects: promising results from management with osteochondral autografts. Orthop J Sports Med. 2020;8(7):1–7.

    Google Scholar 

  10. Camp CL, Stuart MJ, Krych AJ, Levy BA, Bond JR, Collins MS, et al. CT and MRI measurements of tibial tubercle-trochlear groove distances are not equivalent in patients with patellar instability. Am J Sports Med. 2013;41(8):1835–40.

    Article  PubMed  Google Scholar 

  11. Ho CP, James EW, Surowiec RK, Gatlin CC, Ellman MB, Cram TR, et al. Systematic technique-dependent differences in CT versus MRI measurement of the tibial tubercle-trochlear groove distance. Am J Sports Med. 2015;43(3):675–82.

    Article  PubMed  Google Scholar 

  12. Schoettle PB, Zanetti M, Seifert B, Pfirrmann CWA, Fucentese SF, Romero J. The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee. 2006;13:26–31.

    Article  PubMed  Google Scholar 

  13. Brady JM, Rosencrans AS, Shubin Stein BE. Use of TT-PCL versus TT-TG. Curr Rev Musculoskelet Med. 2018;11(2):261–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Heidenreich MJ, Camp CL, Dahm DL, Stuart MJ, Levy BA, Krych AJ. The contribution of the tibial tubercle to patellar instability: analysis of tibial tubercle-trochlear groove (TT-TG) and tibial tubercle-posterior cruciate ligament (TT-PCL) distances. Knee Surg Traumatol Arthrosc. 2017;25(8):2347–51.

    Article  Google Scholar 

  15. Seitlinger G, Scheurecker G, Hogler R, Labey L, Innocenti B, Hofmann S. Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med. 2012;40(5):1119–25.

    Article  PubMed  Google Scholar 

  16. Ambra LF, Hinckel BB, Arendt EA, Farr J, Gomoll AH. Anatomic risk factors for focal cartilage lesions in the patella and trochlea. Am J Sports Med. 2019;47(10):2444–53.

    Article  PubMed  Google Scholar 

  17. Holliday CL, Hiemstra LA, Kerslake S, Grant JA. Relationship between anatomical risk factors, articular cartilage lesions, and patient outcomes following medial patellofemoral ligament reconstruction. Cartilage. 2021;13(1_Suppl):993S–1001S.

    Article  PubMed  Google Scholar 

  18. Mehl J, Feucht MJ, Bode G, Dovi-Akue D, Sudkamp NP, Niemeyer P. Association between patellar cartilage defects and patellofemoral geometry: a matched-pair MRI comparison of patients with and without isolated patellar cartilage defects. Knee Surg Traumatol Arthrosc. 2016;24(3):838–46.

    Article  Google Scholar 

  19. Chiu JKWJ, Wong Y-MY, Yung PSHP, Gabriel YFN. The effects of quadriceps strengthening on pain, function, and patellofemoral joint contact area in persons with patellofemoral pain. Am J Phys Med Rehabil. 2012;91(2):98–106.

    Article  PubMed  Google Scholar 

  20. Wong Y, Chan S, Tang K, Ng GYF. Two modes of weight training programs and patellar stabilization. J Athl Train. 2009;44(3):264–71.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gesslein M, Merkl C, Bail HJ, Krutsh V, Biber R, Schuster P. Refixation of large osteochondral fractures after patella dislocation shows better mid- to long- term outcome compared with debridement. Cartilage. 2021;13(Suppl 1):966S–73S.

    Article  CAS  PubMed  Google Scholar 

  22. Kjennvold S, Ransborg PH, Jakobsen RB, Aroen A. Fixation of acute chondral fractures in adolescent knees. Cartilage. 2021;13(Suppl 1):293S–301S.

    Article  PubMed  Google Scholar 

  23. Churchill JL, Krych AJ, Lemos MJ, Redd M, Bonner KF. A case series of successful repair of articular cartilage fragments in the knee. Am J Sports Med. 2019;47(11):2590–5.

    Article  Google Scholar 

  24. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003;19:477–84.

    Article  PubMed  Google Scholar 

  25. Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthr Cartil. 2006;14:1119–25.

    Article  CAS  Google Scholar 

  26. Beddi A, Feeley BT, Williams RJ. Current concepts review: management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92:994–1009.

    Article  Google Scholar 

  27. Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Traumatol Arthrosc. 2014;22:1986–96.

    Article  Google Scholar 

  28. Goyal D, Keyhani S, Lee EH, Hui JH. Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy. 2013;29(9):1579–88.

    Article  PubMed  Google Scholar 

  29. Gudas R, Simonaityte R, Cekanauskas E, Tamosiunas R. A prospective, randomized clinical study of osteochondral autolo- gous transplantation versus microfracture for the treatment of osteochondritis dissecans in the knee joint in children. J Pediatr Orthop. 2009;29(7):741–8.

    Article  PubMed  Google Scholar 

  30. Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37:2053–63.

    Article  PubMed  Google Scholar 

  31. Cole BJ, Haunschild ED, Carter T, Meyer J, Fortier LA, Gilat R. Clinically significant outcomes following the treatment of focal cartilage defects of the knee with microfracture augmentation using cartilage allograft extracellular matrix: a multicenter prospective study. Arthroscopy. 2021;37(5):1512–21.

    Article  PubMed  Google Scholar 

  32. Bentley G, Biant LC, Carrington RW, Akmal M, Goldberg A, Williams AM, et al. A prospective, randomized comparison of autologous chondrocyte implantation versus mosaic- plasty for osteochondral defects in the knee. J Bone Joint Surg Br. 2003;85(2):223–30.

    Article  CAS  PubMed  Google Scholar 

  33. Hangody L, Dobos J, Balo E, Panics G, Hangody LR, Berkes I. Clinical experience with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med. 2010;38(6):1125–33.

    Article  PubMed  Google Scholar 

  34. Solheim E, Hegna J, Inderhaug E. Clincal outcome after mosaicplasty of knee articular cartilage defects of patellofemoral joint versus tibiofemoral joint. J Orthop. 2020;18:36–40.

    Article  PubMed  Google Scholar 

  35. Figueroa D, Meleán P, Calvo R, Gili F, Zilleruelo N, Vaisman A. Osteochondral autografts in full thickness patella cartilage lesions. Knee. 2011;18:220–3.

    Article  PubMed  Google Scholar 

  36. Nho SJ, Foo LF, Green DM, Shindle MK, Warren RF, Wickiewicz TL, et al. Evaluation of patellar resurfacing with press-fit osteochondral autograft plugs. Am J Sports Med. 2008;36(6):1101–9.

    Article  PubMed  Google Scholar 

  37. Donoso R, Figueroa D, Espinoza J, Yanez C, Saavedra J. Osteochondral autologous transplantation for treating patellar high-grade chondral defects. Orthop J Sports Med. 2019;7(10):1–7.

    Article  Google Scholar 

  38. Figuera D, Rodriguez RC, Donoso R, Espinoza J, Vaisman A, Yanez C. High-grade patellar chondral defects: promising results from management with osteochondral autografts. Orthop J Sports Med. 2020;8(7):1–7.

    Google Scholar 

  39. Astur DC, Arliani GG, Binz M, Astur N, Kaleka CC, Amaro JT, et al. Autologous osteochondral transplantation for treating patellar chondral injuries: evaluation, treatment, and outcomes of a two-year follow-up study. J Bone Joint Surg Am. 2003;96(10):816–23.

    Article  Google Scholar 

  40. Hangody L, Fules P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints. J Bone Joint Surg Am. 2003;85A(Suppl 2):25–32.

    Article  Google Scholar 

  41. Torga Spak R, Teitge RA. Fresh osteochondral allografts for patellofemoral arthritis: long-term follow-up. Clin Orthop Relat Res. 2006;444:193–200.

    Article  PubMed  Google Scholar 

  42. Jamali AA, Emmerson BC, Chung C, Convery FR, Bugbee WD. Fresh osteochondral allografts: results in the patellofemoral joint. Clin Orthop Relat Res. 2005;437:176–85.

    Article  Google Scholar 

  43. Gracitelli GC, Meric G, Pulido PA, Gorz S, De Young AJ, Bugbee WD. Fresh osteochondral allograft transplantation for isolated patellar cartilage injury. Am J Sports Med. 2015;43(4):879–84.

    Article  PubMed  Google Scholar 

  44. Chahal J, Gross AE, Gross C, Mall N, Dwyer T, Chahal A, et al. Outcomes of osteochondral allograft transplantation in the knee: systematic review. Arthroscopy. 2013;29(3):575–88.

    Article  PubMed  Google Scholar 

  45. Familiari F, Cinque ME, Chahla J, Godin JA, Olesen ML, Moatshe G, et al. Clinical outcomes and failure rates of osteochondral allograft transplantation in the knee: a systematic review. Am J Sports Med. 2018;46(14):3541–9.

    Article  PubMed  Google Scholar 

  46. Mirzayan R, Charles MD, Batech M, Suh BD, DeWitt. Bipolar osteochondral allograft transplantation of the patella and trochlea. Cartilage. 2020;11(4):431–40.

    Article  CAS  PubMed  Google Scholar 

  47. Lin KM, Wang D, Burge AJ, Warner T, Jones KJ, Williams RJ. Osteochondral allograft transplant of the patella using femoral condylar allografts: magnetic resonance imaging and clinical outcomes at minimum 2-year follow-up. Orthop J Sports Med. 2021;9(4):1–9.

    Article  Google Scholar 

  48. Cameron JI, Pulido PA, McCauley JC, Bugbee WD. Osteochondral allograft transplantation of the femoral trochlea. Am J Sports Med. 2016;44(3):633–8.

    Article  PubMed  Google Scholar 

  49. Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–34.

    Article  Google Scholar 

  50. Gomoll AH, Gillogly SD, Cole BJ, Farr J, Arnold R, Hussey K, et al. Autologous chondrocyte implantation in the patella: a multicenter experience. Am J Sports Med. 2014;42(5):1074–81.

    Article  PubMed  Google Scholar 

  51. Ebert JR, Schneider A, Fallon M, Wood DJ, Janes GC. A comparison of 2-year outcomes in patients undergoing tibiofemoral or patellofemoral matrix-induced autologous chondrocyte implantation. Am J Sports Med. 2017;45(14):3243–53.

    Article  PubMed  Google Scholar 

  52. Saris D, Price A, Widuchowski W, Bertrand-Marchand M, Caron J, Drogset JO, et al. Matrix-applied characterized autologous chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med. 2014;42(6):1384–94.

    Article  PubMed  Google Scholar 

  53. Shanmugaraj A, Coughlin RP, Kuper GN, Ekhtiari S, Simunovic N, Musahl V, et al. Changing trends in the use of cartilage restoration techniques for the patellofemoral joint: a systematic review. Knee Surg Traumatol Arthrosc. 2019;27(3):854–67.

    Article  Google Scholar 

  54. Hinckel BB, Pratte EL, Baumann CA, Gowd AK, Farr J, Liu JN, et al. Patellofemoral cartilage restoration: a systematic review and meta-analysis of clinical outcomes. Am J Sports Med. 2020;48(7):1756–72.

    Article  PubMed  Google Scholar 

  55. Andrade R, Nunes J, Hinckel BB, Gruskay J, Vasta S, Bastos R, et al. Cartilage restoration of patellofemoral lesions: a systematic review. Cartilage. 2021;13(Suppl 1):57S–73S.

    Article  PubMed  Google Scholar 

  56. Farr J, Yao JQ. Chondral defect repair with particulated juvenile cartilage allograft. Cartilage. 2011;2:346–53.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tompkins M, Hamann JC, Diduch DR, Bonner KF, Hart JM, Gwathmey FW. Preliminary results of a novel single-stage cartilage restoration technique: particulated juvenile articular cartilage allograft for chondral defects of the patella. Arthroscopy. 2013;29(10):1661–70.

    Article  PubMed  Google Scholar 

  58. Wang T, Belkin NS, Burge AJ, Chang B, Pais M, Mahony G, et al. Patellofemoral cartilage lesions treated with particulated juvenile allograft cartilage: a prospective study with minimum 2-year clinical and magnetic resonance imaging outcomes. Arthroscopy. 2018;34(5):1498–505.

    Article  PubMed  Google Scholar 

  59. Fulkerson JP, Becker GJ, Meaney JA, Miranda M, Folcik MA. Anteromedial tibial tubercle transfer without bone graft. Am J Sports Med. 2017;18(5):496–7.

    Google Scholar 

  60. Preston CF, Fulkerson EW, Meislin R, Di Cesare PE. Osteotomy about the knee: applications, techniques, and results. J Knee Surg. 2005;18:258–72.

    Article  PubMed  Google Scholar 

  61. Beck PR, Thomas AL, Farr J, Lewis PB, Cole BJ. Trochlear contact pressures after anteromedialization of the tibial tubercle. Am J Sports Med. 2005;33:1710–5.

    Article  PubMed  Google Scholar 

  62. Stephen JM, Lumpaopong P, Dodds AL, Williams A, Amis AA. The effect of tibial tuberosity medialization and lateralization on patellofemoral joint kinematics, contact mechanics, and stability. Am J Sports Med. 2015;43(1):186–94.

    Article  PubMed  Google Scholar 

  63. Henderson IJ, Lavigne P. Periosteal autologous chondrocyte implantation for patellar chondral defect in patients with normal and abnormal patellar tracking. Knee. 2006;13:274–9.

    Article  CAS  PubMed  Google Scholar 

  64. Pascual-Garrido C, Slabaugh MA, L’Heureux DR, Friel NA, Cole BJ. Recommendations and treatment outcomes for patellofemoral articular cartilage defects with autologous chondrocyte implantation: prospective evaluation at average 4-year follow-up. Am J Sports Med. 2009;37(Suppl 1):33S–41S.

    Article  PubMed  Google Scholar 

  65. Gillogly SD, Arnold RM. Autologous chondrocyte implantation and anteromedialization for isolated patellar articular cartilage lesions: 5-to11-year follow-up. Am J Sports Med. 2014;42(4):912–20.

    Article  PubMed  Google Scholar 

  66. Trinh TQ, Harris JD, Siston RA, Flanigan DC. Improved outcomes with combined autologous chondrocyte implantation and patellofemoral osteotomy versus isolated autologous chondrocyte implantation. Arthroscopy. 2013;29(3):566–74.

    Article  PubMed  Google Scholar 

  67. Gobbi A, Whyte GP. Long-term clinical outcomes of one-stage cartilage repair in the knee with hyaluronic acid-based scaffold embedded with mesenchymal stem cells sourced from bone marrow aspirate concentrate. Am J Sports Med. 2019;47(7):1621–8.

    Article  PubMed  Google Scholar 

  68. Peng G, Liu M, Guan Z, Hou Y, Liu Q, Sun X, et al. Patellofemoral arthroplasty versus total knee arthroplasty for isolated patellofemoral osteoarthritis: a systematic review and meta-analysis. J Orthop Surg Res. 2021;16(1):264.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Gomoll .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gomoll, A.H., Chilelli, B.J. (2024). Adapting Cartilage Restoration to the Patellofemoral Compartment. In: Sherman, S.L., Chahla, J., LaPrade, R.F., Rodeo, S.A. (eds) Knee Arthroscopy and Knee Preservation Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-29430-3_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29430-3_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29429-7

  • Online ISBN: 978-3-031-29430-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics