Skip to main content

Cell-Based Cartilage Repair (MACI and DeNovo)

  • Reference work entry
  • First Online:
Knee Arthroscopy and Knee Preservation Surgery

Abstract

Articular cartilage defects are common and impair quality of life similar to severe osteoarthritis with associated pain, dysfunction, and progression to joint degeneration. Each year between 30,000 and 100,000 procedures are performed to address symptomatic cartilage defects of the knee, particularly in patients aged 40–59. At the time of chondral defect evaluation, surgeons should ensure that a comprehensive workup is performed to assess all factors that may influence both the etiology and the natural history after treatment of the defect(s) being evaluated including mechanical alignment, meniscus status, and ligamentous stability. With appropriate indications and good surgical technique, matrix-induced autologous chondrocyte implantation (MACI) and particulated juvenile cartilage allograft (PJAC) can successfully treat large chondral defects with satisfactory mid- to long-term outcomes. This is of substantial clinical utility as the knee cartilage surgeon’s toolbox continues to expand with biologic, cell-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 971.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heir S, Nerhus TK, Røtterud JH, et al. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am J Sports Med. 2010;38(2):231. https://doi.org/10.1177/0363546509352157.

    Article  PubMed  Google Scholar 

  2. Riboh JC, Cole BJ, Farr J. Particulated articular cartilage for symptomatic chondral defects of the knee. Curr Rev Musculoskelet Med. 2015;8(4):429. https://doi.org/10.1007/s12178-015-9300-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McCormick F, Harris JD, Abrams GD, et al. Trends in the surgical treatment of articular cartilage lesions in the United States: an analysis of a large private-payer database over a period of 8 years. Arthrosc J Arthrosc Relat Surg. 2014;30(2):222. https://doi.org/10.1016/j.arthro.2013.11.001.

    Article  Google Scholar 

  4. Brittberg M, Recker D, Ilgenfritz J, Saris DBF. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med. 2018;46(6):1343. https://doi.org/10.1177/0363546518756976.

    Article  PubMed  Google Scholar 

  5. Pareek A, Carey JL, Reardon PJ, Peterson L, Stuart MJ, Krych AJ. Long-term outcomes after autologous chondrocyte implantation: a systematic review at mean follow-up of 11.4 years. Cartilage. 2016;7(4):298. https://doi.org/10.1177/1947603516630786.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Saris D, Price A, Widuchowski W, et al. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med. 2014;42(6):1384. https://doi.org/10.1177/0363546514528093.

    Article  PubMed  Google Scholar 

  7. Su CA, Trivedi NN, Le HT, et al. Clinical and radiographic outcomes after treatment of patellar chondral defects: a systematic review. Sports Health. 2021;13(5):490. https://doi.org/10.1177/19417381211003515.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Krych AJ, Hevesi M, Desai VS, Camp CL, Stuart MJ, Saris DBF. Learning from failure in cartilage repair surgery: an analysis of the mode of failure of primary procedures in consecutive cases at a tertiary referral center. Orthop J Sports Med. 2018;6(5). https://doi.org/10.1177/2325967118773041.

  9. Yanke AB, Cole BJ. Joint preservation of the knee: a clinical casebook; 2019. https://doi.org/10.1007/978-3-030-01491-9.

    Book  Google Scholar 

  10. Dixit S, DiFiori JP, Burton M, Mines B. Management of patellofemoral pain syndrome. Am Fam Physician. 2007;75(2):194.

    PubMed  Google Scholar 

  11. Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H. [Patella infera. Apropos of 128 cases]. Revue de chirurgie orthopedique et reparatrice de l’appareil moteur. 1982;68(5).

    Google Scholar 

  12. Grelsamer RP, Bazos AN, Proctor CS. Radiographic analysis of patellar tilt. J Bone Joint Surg Ser B. 1993;75(5):822. https://doi.org/10.1302/0301-620x.75b5.8376449.

    Article  CAS  Google Scholar 

  13. Dejour H, Walch G, Neyret P, Adeleine P. [Dysplasia of the femoral trochlea]. Revue de chirurgie orthopedique et reparatrice de l’appareil moteur. 1990;76(1):45.

    Google Scholar 

  14. Gomoll AH, Yoshioka H, Watanabe A, Dunn JC, Minas T. Preoperative measurement of cartilage defects by MRI underestimates lesion size. Cartilage. 2011;2(4):389. https://doi.org/10.1177/1947603510397534.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mehl J, Feucht MJ, Bode G, Dovi-Akue D, Südkamp NP, Niemeyer P. Association between patellar cartilage defects and patellofemoral geometry: a matched-pair MRI comparison of patients with and without isolated patellar cartilage defects. Knee Surg Sports Traumatol Arthrosc. 2016;24(3):838. https://doi.org/10.1007/s00167-014-3385-7.

    Article  PubMed  Google Scholar 

  16. Johnston JD, Masri BA, Wilson DR. Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary findings. Osteoarthr Cartil. 2009;17(10):1319. https://doi.org/10.1016/j.joca.2009.04.013.

    Article  CAS  Google Scholar 

  17. Mistry H, Connock M, Pink J, et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol Assess. 2017;21(6):1. https://doi.org/10.3310/hta21060.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marlovits S, Zeller P, Singer P, Resinger C, Vécsei V. Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol. 2006;57(1):24. https://doi.org/10.1016/j.ejrad.2005.08.009.

    Article  PubMed  Google Scholar 

  19. Kon E, Filardo G, di Martino A, Marcacci M. ACI and MACI. J Knee Surg. 2012;25(1). https://doi.org/10.1055/s-0031-1299651.

  20. MACI Package Insert. Published online June 2019, p. 1–15.

    Google Scholar 

  21. Jones KJ, Cash BM. Matrix-induced autologous chondrocyte implantation with autologous bone grafting for osteochondral lesions of the femoral trochlea. Arthrosc Tech. 2019;8(3):e259–66. https://doi.org/10.1016/J.EATS.2018.10.022.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Moran CJ, Pascual-Garrido C, Chubinskaya S, et al. Restoration of articular cartilage. J Bone Joint Surg Ser A. 2014;96(4):336. https://doi.org/10.2106/JBJS.L.01329.

    Article  Google Scholar 

  23. Albrecht F, Roessner A, Zimmermann E. Closure of osteochondral lesions using chondral fragments and fibrin adhesive. Arch Orthop Trauma Surg. 1983;101(3):213. https://doi.org/10.1007/BF00436773.

    Article  CAS  PubMed  Google Scholar 

  24. Frisbie DD, Lu Y, Kawcak CE, Dicarlo EF, Binette F, Mcilwraith CW. In vivo evaluation of autologous cartilage fragment-loaded scaffolds implanted into equine articular defects and compared with autologous chondrocyte implantation. Am J Sports Med. 2009;37(1_suppl):71. https://doi.org/10.1177/0363546509348478.

    Article  Google Scholar 

  25. Lu Y, Dhanaraj S, Wang Z, et al. Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Orthop Res. 2006;24(6):1261. https://doi.org/10.1002/jor.20135.

    Article  PubMed  Google Scholar 

  26. Farr J, Cole BJ, Sherman S, Karas V. Particulated articular cartilage: CAIS and DeNovo NT. J Knee Surg. 2012;25(1):23. https://doi.org/10.1055/s-0031-1299652.

    Article  PubMed  Google Scholar 

  27. Cole BJ, Farr J, Winalski CS, et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39(6):1170. https://doi.org/10.1177/0363546511399382.

    Article  PubMed  Google Scholar 

  28. Farr J, Yao JQ. Chondral defect repair with particulated juvenile cartilage allograft. Cartilage. 2011;2(4):346. https://doi.org/10.1177/1947603511405838.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bonasia DE, Martin JA, Marmotti A, et al. Cocultures of adult and juvenile chondrocytes compared with adult and juvenile chondral fragments: in vitro matrix production. Am J Sports Med. 2011;39(11):2355. https://doi.org/10.1177/0363546511417172.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Adkisson HD IV, Gillis MP, Davis EC, Maloney W, Hruska KA. In vitro generation of scaffold independent neocartilage. Clin Orthop Relat Res. 2001;391:S280. https://doi.org/10.1097/00003086-200110001-00026.

    Article  Google Scholar 

  31. Adkisson HD, Martin JA, Amendola RL, et al. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med. 2010;38(7):1324. https://doi.org/10.1177/0363546510361950.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bartlett W, Skinner JA, Gooding CR, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee. A prospective, randomised study. J Bone Joint Surg Ser B. 2005;87(5):640. https://doi.org/10.1302/0301-620X.87B5.15905.

    Article  CAS  Google Scholar 

  33. Adkisson HD, Milliman C, Zhang X, Mauch K, Maziarz RT, Streeter PR. Immune evasion by neocartilage-derived chondrocytes: implications for biologic repair of joint articular cartilage. Stem Cell Res. 2010;4(1):57. https://doi.org/10.1016/j.scr.2009.09.004.

    Article  CAS  PubMed  Google Scholar 

  34. Pestka JM, Bode G, Salzmann G, Südkamp NP, Niemeyer P. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med. 2012;40(2):325. https://doi.org/10.1177/0363546511425651.

    Article  PubMed  Google Scholar 

  35. Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med. 2009;37(5):902. https://doi.org/10.1177/0363546508330137.

    Article  PubMed  Google Scholar 

  36. Müller PE, Gallik D, Hammerschmid F, et al. Third-generation autologous chondrocyte implantation after failed bone marrow stimulation leads to inferior clinical results. Knee Surg Sports Traumatol Arthrosc. 2020;28(2):470. https://doi.org/10.1007/s00167-019-05661-6.

    Article  PubMed  Google Scholar 

  37. Weißenberger M, Heinz T, Boelch SP, et al. Is debridement beneficial for focal cartilage defects of the knee: data from the German Cartilage Registry (KnorpelRegister DGOU). Arch Orthop Trauma Surg. 2020;140(3):373. https://doi.org/10.1007/s00402-020-03338-1.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dozin B, Malpeli M, Cancedda R, et al. Comparative evaluation of autologous chondrocyte implantation and mosaicplasty: a multicentered randomized clinical trial. Clin J Sport Med. 2005;15(4):220. https://doi.org/10.1097/01.jsm.0000171882.66432.80.

    Article  PubMed  Google Scholar 

  39. Hevesi M, Krych AJ, Saris DBF. Treatment of cartilage defects with the matrix-induced autologous chondrocyte implantation cookie cutter technique. Arthrosc Tech. 2019;8(6):e591. https://doi.org/10.1016/j.eats.2019.01.022.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hevesi M, van Genechten W, Krych AJ, Saris DBF. The sound of cartilage repair: the importance of using pitch and volume cues in cartilage restoration surgery. Arthrosc Tech. 2021;10(9):e2049. https://doi.org/10.1016/j.eats.2021.05.007.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gomoll AH, Probst C, Farr J, Cole BJ, Minas T. Use of a type I/III bilayer collagen membrane decreases reoperation rates for symptomatic hypertrophy after autologous chondrocyte implantation. Am J Sports Med. 2009;37(1_suppl):20. https://doi.org/10.1177/0363546509348477.

    Article  Google Scholar 

  42. Kraeutler MJ, Belk JW, Carver TJ, McCarty EC. Is delayed weightbearing after matrix-associated autologous chondrocyte implantation in the knee associated with better outcomes? A systematic review of randomized controlled trials. Orthop J Sports Med. 2018;6(5) https://doi.org/10.1177/2325967118770986.

  43. Basad E, Wissing FR, Fehrenbach P, Rickert M, Steinmeyer J, Ishaque B. Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sports Traumatol Arthrosc. 2015;23(12):3729. https://doi.org/10.1007/s00167-014-3295-8.

    Article  PubMed  Google Scholar 

  44. Ebert JR, Fallon M, Ackland TR, Janes GC, Wood DJ. Minimum 10-year clinical and radiological outcomes of a randomized controlled trial evaluating 2 different approaches to full Weightbearing after matrix-induced autologous chondrocyte implantation. Am J Sports Med. 2020;48(1):133. https://doi.org/10.1177/0363546519886548.

    Article  PubMed  Google Scholar 

  45. Bentley G, Biant LC, Vijayan S, Macmull S, Skinner JA, Carrington RWJ. Minimum ten-year results of a prospective randomised study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. J Bone Joint Surg Ser B. 2012;94B(4). https://doi.org/10.1302/0301-620X.94B4.27495.

  46. Vanlauwe J, Saris DBF, Victor J, Almqvist KF, Bellemans J, Luyten FP. Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med. 2011;39(12):2566. https://doi.org/10.1177/0363546511422220.

    Article  PubMed  Google Scholar 

  47. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889. https://doi.org/10.1056/nejm199410063311401.

    Article  CAS  PubMed  Google Scholar 

  48. Gudas R, Gudaite A, Pocius A, et al. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med. 2012;40(11):2499. https://doi.org/10.1177/0363546512458763.

    Article  PubMed  Google Scholar 

  49. Wylie JD, Hartley MK, Kapron AL, Aoki SK, Maak TG. Failures and reoperations after matrix-assisted cartilage repair of the knee: a systematic review. Arthrosc J Arthrosc Relat Surg. 2016;32(2):386. https://doi.org/10.1016/j.arthro.2015.07.025.

    Article  Google Scholar 

  50. Ebert JR, Smith A, Fallon M, et al. Incidence, degree, and development of graft hypertrophy 24 months after matrix-induced autologous chondrocyte implantation: association with clinical outcomes. Am J Sports Med. 2015;43(9):2208. https://doi.org/10.1177/0363546515591257.

    Article  PubMed  Google Scholar 

  51. Ebert JR, Robertson WB, Lloyd DG, Zheng MH, Wood DJ, Ackland T. A prospective, randomized comparison of traditional and accelerated approaches to postoperative rehabilitation following autologous chondrocyte implantation: 2-year clinical outcomes. Cartilage. 2010;1(3):180. https://doi.org/10.1177/1947603510362907.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang T, Belkin NS, Burge AJ, et al. Patellofemoral cartilage lesions treated with Particulated juvenile allograft cartilage: a prospective study with minimum 2-year clinical and magnetic resonance imaging outcomes. Arthrosc J Arthrosc Relat Surg. 2018;34(5):1498. https://doi.org/10.1016/j.arthro.2017.11.021.

    Article  Google Scholar 

  53. White CL, Chauvin NA, Waryasz GR, March BT, Francavilla ML. MRI of native knee cartilage delamination injuries. Am J Roentgenol. 2017;209(5):W317. https://doi.org/10.2214/AJR.16.17708.

    Article  Google Scholar 

  54. Tompkins M, Hamann JC, Diduch DR, et al. Preliminary results of a novel single-stage cartilage restoration technique: particulated juvenile articular cartilage allograft for chondral defects of the patella. Arthrosc J Arthrosc Relat Surg. 2013;29(10):1661. https://doi.org/10.1016/j.arthro.2013.05.021.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Credille, K., Hevesi, M., Wang, Z., Yanke, A.B. (2024). Cell-Based Cartilage Repair (MACI and DeNovo). In: Sherman, S.L., Chahla, J., LaPrade, R.F., Rodeo, S.A. (eds) Knee Arthroscopy and Knee Preservation Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-29430-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29430-3_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29429-7

  • Online ISBN: 978-3-031-29430-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics