Skip to main content

Per- and Polyfluoroalkylsubstances (PFAS) and Their Toxicology as Evidenced Through Disease and Biomarkers

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Biomarkers in Toxicology

Abstract

Per- and polyfluoroalkyl substances (PFAS) are a group of at least 4730 chemicals with clearly important surfactant properties. They are used in coatings, paints, stain repellents, and firefighting foams as well as other industrial processes. Their high use and recalcitrance to degradation coupled with their lipophilicity and bioaccumulation makes them persistent organic pollutants or forever chemicals. In turn, they are measured in the serum of most humans, especially long-chain PFAS. The toxicity of most PFASs have not been studied, and the USEPA is starting a National PFAS-testing strategy to prioritize PFAS testing because testing all PFASs is not feasible. Some PFASs such as PFOA and PFOS are currently banned in many countries because of their persistence and bioaccumulation. Many PFASs have been observed in the environment and bioconcentrate in aquatic food webs. These chemicals are associated with immunotoxicity, cardiovascular disease, liver disease, reproductive and developmental disorders, and other human health issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

6:2 FTS:

1H, 1H, 2H, 2H-perfluorooctane sulfonic acid

ALT:

Alanine aminotransferase

AhR:

Aryl hydrocarbon receptor

AR:

Androgen receptor

BCF:

Bioconcentration factor

CPT1:

Carnitine Palmitoyl transferase 1

CYP11A1:

Cytochrome P450 11A1

CYP17A1:

Cytochrome P450 17A1

ER:

Estrogen Receptor

FABP:

Fatty acid-binding protein

FASN:

Fatty acid synthase

FOSA:

Perfluorooctane sulfonamide

FXR:

Farnesoid X receptor

GAC:

Granular activated carbon

GR:

Glucocorticoid receptor

HFPO-DA :

Hexafluoropropylene oxide-dimer acid

HSD11B1:

Hydroxysteroid dehydrogenase 11B1

HSD17B:

Hydroxysteroid dehydrogenase 17B

HSD3B1:

Hydroxysteroid dehydrogenase 3B1

IARC:

International Agency for Research on Cancer

Koc:

Organic carbon-partitioning coefficient

Kow:

Octanol-water-partitioning coefficient

LDL:

Low-density lipoprotein

logP:

Partitioning coefficient

LPL:

Lipoprotein lipase

LXR:

Liver X receptor

MC4:

Melanocortin 4

MetFOSA:

N-methyl perfluoro-1-octanesulfonamide

NK:

Natural killer

NRF2:

Nuclear receptor erthyroid-2-related factor 2

OAT:

Organic anion transporter

OATP:

Organic anion transport protein

PFAS:

Per- and polyfluoroalkyl substances

PFBA:

Perfluorobutanoate

PFCA:

Perfluorinated carboxylic acids

PFDA:

Perfluorodecanoate

PFDoD :

Perfluorododecanoic acid

PFHpA:

Perfluoroheptanoic acid

PFHxA :

Per-fluorohexanoic acid

PFHxS:

Per-fluorohexanesulfonate

PFMOBA:

Perfluoro-4-methoxybutanioc acid

PFNA:

Perfluorononanoic acid

PFOA:

Perfluorooctanoic acid

PFOS:

Perfluorooctanesulfonate

PFPeA :

Perfluoropentanoic acid

PFSA:

Perfluorinated sulfonic acids

PFTeDA :

Per- fluorotetradecanoic acid

PFTrDA :

Perfluorotridecanoic acid

PFUnDA:

Perfluoroundecanoic acid

PGRMC1:

Progesterone receptor membrane-associated component 1

POP:

Persistent organic pollutant

PPAR:

Peroxisome proliferator-activated receptor

PXR:

Pregnane X receptor

ROS:

Reactive oxygen species

RXR:

Retinoid X receptor

SCD1:

Stearoyl coenzyme A desaturase 1

Srebf-1c:

Sterol-regulatory element-binding factor 1c

STARD1:

Steroidogenic acute regulatory protein

TAG:

Triacylglycerol

THR:

Thyroid hormone receptors

TNFα:

Tumor necrose factor α

URAT1:

Urate transporter 1

References

  • Baldwin WS, Bain LJ, Di Giulio R, Kullman S, Rice CD, Ringwood AH, den Hurk PV. 20th pollutant responses in marine organisms (PRIMO 20): global issues and fundamental mechanisms caused by pollutant stress in marine and freshwater organisms. Aquat Toxicol. 2020;227:105620.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin WS. Phase 0 of the xenobiotic response: nuclear receptors and other transcription factors as a first step in protection from xenobiotics. Nucl Recep Res. 2019;6:101447.

    CAS  Google Scholar 

  • Biegel LB, Hurtt ME, Frame SR, O’Connor JC, Cook JC. Mechanisms of extrahepatic tumor induction by peroxisome proliferators in male CD rats. Toxicol Sci. 2001;60:44–55.

    Article  CAS  PubMed  Google Scholar 

  • Blake BE, Fenton SE. Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: a review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology. 2020;443:152565.

    Article  CAS  PubMed  Google Scholar 

  • Brendel S, Fetter É, Staude C, Vierke L, Biegel-Engler A. Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH. Environ Sci Eur. 2018;30:9–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brusseau ML. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances. Environ Pollut. 2019;254:113102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canova C, Di Nisio A, Barbieri G, Russo F, Fletcher T, Batzella E, Dalla Zuanna T, Pitter G. PFAS concentrations and cardiometabolic traits in highly exposed children and adolescents. Int J Environ Res Public Health. 2021;18:12881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coperchini F, Croce L, Ricci G, Magri F, Rotondi M, Imbriani M, Chiovato L. Thyroid disrupting effects of old and new generation PFAS. Front Endocrinol. 2021;11

    Google Scholar 

  • Corton CJ, Cunningham ML, Hummer TB, Lau C, Meek B, Peters JM, Popp JA, Rhomberg L, Seed J, Klaunig JE. Mode of action framework analysis for receptor-mediated toxicity: the peroxisome proliferator-activated receptor alpha (PPARα) as a case study. Crit Rev Toxicol. 2014;44:1–49.

    Article  CAS  PubMed  Google Scholar 

  • Costello E, Rock S, Stratakis N, Eckel SP, Walker DI, Valvi D, Cserbik D, Jenkins T, Xanthakos SA, Kohli R, Sisley S, Vasiliou V, La Merrill MA, Rosen H, Conti DV, McConnell R, Chatzi L. Exposure to per- and polyfluoroalkyl substances and markers of liver injury: a systematic review and meta-analysis. Environ Health Perspect. 2022;130:46001.

    Article  CAS  PubMed  Google Scholar 

  • Das KP, Wood CR, Lin MT, Starkov AA, Lau C, Wallace KB, Corton JC, Abbott BD. Perfluoroalkyl acids-induced liver steatosis: effects on genes controlling lipid homeostasis. Toxicology. 2017;378:37–52.

    Article  CAS  PubMed  Google Scholar 

  • Development, Organization for Economic and Community. Results of the 2006 survey on the production and use of PFOS, PFAS, PFOA, PFCA, their related substances and products/mixtures containing these substances OECD Environment, Health and Safety Publications Series on Risk Management. 2006:22.

    Google Scholar 

  • Erinc A, Davis MB, Padmanabhan V, Langen E, Goodrich JM. Considering environmental exposures to per- and polyfluoroalkyl substances (PFAS) as risk factors for hypertensive disorders of pregnancy. Environ Res. 2021;197:111113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fair PA, Romano T, Schaefer AM, Reif JS, Bossart GD, Houde M, Muir D, Adams J, Rice C, Hulsey TC, Peden-Adams M. Associations between perfluoroalkyl compounds and immune and clinical chemistry parameters in highly exposed bottlenose dolphins (Tursiops truncatus). Environ Toxicol Chem. 2013;32:736–46.

    Article  CAS  PubMed  Google Scholar 

  • Fei C, McLaughlin JK, Lipworth L, Olsen J. Maternal levels of perfluorinated chemicals and subfecundity. Hum Reprod. 2009;24:1200–5.

    Article  CAS  PubMed  Google Scholar 

  • Foguth R, Sepúlveda MS, Cannon J. Per- and polyfluoroalkyl substances (PFAS) neurotoxicity in sentinel and non-traditional laboratory model systems: potential utility in predicting adverse outcomes in human health. Toxics. 2020;8:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisbee SJ, Brooks AP Jr, Maher A, Flensborg P, Arnold S, Fletcher T, Steenland K, Shankar A, Knox SS, Pollard C, Halverson JA, Vieira VM, Jin C, Leyden KM, Ducatman AM. The C8 health project: design, methods, and participants. Environ Health Perspect. 2009;117:1873–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuhata R, Kabe Y, Kanai A, Sugiura Y, Tsugawa H, Sugiyama E, Hirai M, Yamamoto T, Koike I, Yoshikawa N, Tanaka H, Koseki M, Nakae J, Matsumoto M, Nakamura M, Suematsu M. Progesterone receptor membrane associated component 1 enhances obesity progression in mice by facilitating lipid accumulation in adipocytes. Commun Biol. 2020;3:479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleason JA, Post GB, Fagliano JA. Associations of perfluorinated chemical serum concentrations and biomarkers of liver function and uric acid in the US population (NHANES), 2007-2010. Environ Res. 2015;136:8–14.

    Article  CAS  PubMed  Google Scholar 

  • Goeritz I, Falk S, Stahl T, Schäfers C, Schlechtriem C. Biomagnification and tissue distribution of perfluoroalkyl substances (PFASs) in market-size rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem. 2013;32:2078–88.

    Article  CAS  PubMed  Google Scholar 

  • Grandjean P, Andersen EW, Budtz-Jørgensen E, Nielsen F, Mølbak K, Weihe P, Heilmann C. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA. 2012;307:391–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gribble MO, Bartell SM, Kannan K, Wu Q, Fair PA, Kamen DL. Longitudinal measures of perfluoroalkyl substances (PFAS) in serum of Gullah African Americans in South Carolina: 2003-2013. Environ Res. 2015;143:82–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton MC, Heintz MM, Pfohl M, Marques E, Ford L, Slitt AL, Baldwin WS. Increased toxicity and retention of perflourooctane sulfonate (PFOS) in humanized CYP2B6-transgenic mice compared to Cyp2b-null mice is relieved by a high-fat diet (HFD). Food Chem Toxicol. 2021;152:112175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Nabb DL, Russell MH, Kennedy GL, Rickard RW. Renal elimination of perfluorocarboxylates (PFCAs). Chem Res Toxicol. 2012;25:35–46.

    Article  CAS  PubMed  Google Scholar 

  • He A, Lu Y, Chen F, Li F, Lv K, Cao H, Sun Y, Liang Y, Li J, Zhao L, Zhang X, Li L, Wang Y, Jiang G. Exploring the origin of efficient adsorption of poly- and perfluoroalkyl substances in household point-of-use water purifiers: deep insights from a joint experimental and computational study. Sci Total Environ. 2022;831:154988.

    Article  CAS  PubMed  Google Scholar 

  • Heindel JJ, Blumberg B. Environmental obesogens: mechanisms and controversies. Annu Rev Pharmacol Toxicol. 2019;59:89–106.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JP, Mota LC, Baldwin WS. Activation of CAR and PXR by dietary, environmental and occupational chemicals alters drug metabolism, intermediary metabolism, and cell proliferation. Curr Pharmacogenomics Pers Med. 2009;7:81–105.

    Article  CAS  Google Scholar 

  • Houck KA, Patlewicz G, Richard AM, Williams AJ, Shobair MA, Smeltz M, Clifton MS, Wetmore B, Medvedev A, Makarov S. Bioactivity profiling of per- and polyfluoroalkyl substances (PFAS) identifies potential toxicity pathways related to molecular structure. Toxicology. 2021;457:152789.

    Article  CAS  PubMed  Google Scholar 

  • Howell JJ, Stoffel M. Nuclear export-independent inhibition of Foxa2 by insulin. J Biol Chem. 2009;284:24816–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin R, McConnell R, Catherine C, Xu S, Walker DI, Stratakis N, Jones DP, Miller GW, Peng C, Conti DV, Vos MB, Chatzi L. Perfluoroalkyl substances and severity of nonalcoholic fatty liver in children: an untargeted metabolomics approach. Environ Int. 2020;134:105220.

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Wong LY, Jia LT, Kuklenyik Z, Calafat AM. Trends in exposure to polyfluoroalkyl chemicals in the U.S. population: 1999-2008. Environ Sci Technol. 2011;45:8037–45.

    Article  CAS  PubMed  Google Scholar 

  • Khazaee M, Christie E, Cheng W, Michalsen M, Field J, Ng C. Perfluoroalkyl acid binding with peroxisome proliferator-activated receptors α, γ, and δ, and fatty acid binding proteins by equilibrium dialysis with a comparison of methods. Toxics. 2021;9:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Park J, Kim N, Park H, Lim K. Inhibition of androgen receptor can decrease fat metabolism by decreasing carnitine palmitoyltransferase I levels in skeletal muscles of trained mice. Nutrit Metabol. 2019;16:82.

    Article  Google Scholar 

  • Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49:D1388–d95.

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Choi K. Perfluoroalkyl substances exposure and thyroid hormones in humans: epidemiological observations and implications. Ann Pediatr Endocrinol Metabol. 2017;22:6–14.

    Article  Google Scholar 

  • Levin BE. Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis. Philos Trans R Soc Lond B Biol Sci. 2006;361:1107–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Quan X, Lei S, Huang Z, Wang Q, Xu P. PFOS inhibited normal functional development of placenta cells via PPARγ signaling. Biomedicine. 2021;9:677.

    CAS  Google Scholar 

  • Li L, Li D, Heyward S, Wang H. Transcriptional regulation of CYP2B6 expression by hepatocyte nuclear factor 3β in human liver cells. PLoS One. 2016;11:e0150587.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Andersson A, Xu Y, Pineda D, Nilsson CA, Lindh CH, Jakobsson K, Fletcher T. Determinants of serum half-lives for linear and branched perfluoroalkyl substances after long-term high exposure—a study in Ronneby, Sweden. Environ Int. 2022;163:107198.

    Article  PubMed  Google Scholar 

  • Liu S, Yang R, Yin N, Faiola F. The short-chain perfluorinated compounds PFBS, PFHxS, PFBA and PFHxA, disrupt human mesenchymal stem cell self-renewal and adipogenic differentiation. J Environ Sci. 2020;88:187–99.

    Article  CAS  Google Scholar 

  • Lopez-Espinosa MJ, Carrizosa C, Luster MI, Margolick JB, Costa O, Leonardi GS, Fletcher T. Perfluoroalkyl substances and immune cell counts in adults from the mid-Ohio Valley (USA). Environ Int. 2021;156:106599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques E, Pfohl M, Wei W, Tarantola G, Ford L, Amaeze O, Alesio J, Ryu S, Jia X, Zhu H, Bothun GD, Slitt A. Replacement per- and polyfluoroalkyl substances (PFAS) are potent modulators of lipogenic and drug metabolizing gene expression signatures in primary human hepatocytes. Toxicol Appl Pharmacol. 2022;442:115991.

    Article  CAS  PubMed  Google Scholar 

  • Martin JW, Mabury SA, Solomon KR, Muir DC. Dietary accumulation of perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem. 2003a;22:189–95.

    Article  CAS  PubMed  Google Scholar 

  • Martin JW, Mabury SA, Solomon KR, Muir DCG. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem. 2003b;22:196–204.

    Article  CAS  PubMed  Google Scholar 

  • Mattsson K, Rignell-Hydbom A, Holmberg S, Thelin A, Jönsson BAG, Lindh CH, Sehlstedt A, Rylander L. Levels of perfluoroalkyl substances and risk of coronary heart disease: findings from a population-based longitudinal study. Environ Res. 2015;142:148–54.

    Article  CAS  PubMed  Google Scholar 

  • McDonough CA, Choyke S, Barton KE, Mass S, Starling AP, Adgate JL, Higgins CP. Unsaturated PFOS and other PFASs in human serum and drinking water from an AFFF-impacted community. Environ Sci Technol. 2021;55:8139–48.

    Article  CAS  PubMed  Google Scholar 

  • Meneguzzi A, Fava C, Castelli M, Minuz P. Exposure to perfluoroalkyl chemicals and cardiovascular disease: experimental and epidemiological evidence. Front Endocrinol. 2021;12.

    Google Scholar 

  • Miranda DA, Benskin JP, Awad R, Lepoint G, Leonel J, Hatje V. Bioaccumulation of per- and polyfluoroalkyl substances (PFASs) in a tropical estuarine food web. Sci Total Environ. 2021;754:142146.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TMH, Bräunig J, Thompson K, Thompson J, Kabiri S, Navarro DA, Kookana RS, Grimison C, Barnes CM, Higgins CP, McLaughlin MJ, Mueller JF. Influences of chemical properties, soil properties, and solution pH on soil-water partitioning coefficients of per- and polyfluoroalkyl substances (PFASs). Environ Sci Technol. 2020;54:15883–92.

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Herrera V, Sierra-Alvarez R. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere. 2008;72:1588–93.

    Article  CAS  PubMed  Google Scholar 

  • Olsen GW, Zobel LR. Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. Int Arch Occup Environ Health. 2007;81:231–46.

    Article  CAS  PubMed  Google Scholar 

  • Pérez F, Nadal M, Navarro-Ortega A, Fàbrega F, Domingo JL, Barceló D, Farré M. Accumulation of perfluoroalkyl substances in human tissues. Environ Int. 2013;59:354–62.

    Article  PubMed  Google Scholar 

  • Qian Y, Ducatman A, Ward R, Leonard S, Bukowski V, Lan Guo N, Shi X, Vallyathan V, Castranova V. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability. J Toxic Environ Health A. 2010;73:819–36.

    Article  CAS  Google Scholar 

  • Rosen MB, Schmid JR, Corton JC, Zehr RD, Das KP, Abbott BD, Lau C. Gene expression profiling in wild-type and PPARα-null mice exposed to perfluorooctane sulfonate reveals PPARα-independent effects. PPAR Res. 2010;2010:794739.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salimi A, Nikoosiar Jahromi M, Pourahmad J. Maternal exposure causes mitochondrial dysfunction in brain, liver, and heart of mouse fetus: an explanation for perfluorooctanoic acid induced abortion and developmental toxicity. Environ Toxicol. 2019;34:878–85.

    Article  CAS  PubMed  Google Scholar 

  • Salter DM, Wei W, Nahar PP, Marques E, Slitt AL. Perfluorooctanesulfonic acid (PFOS) thwarts the beneficial effects of calorie restriction and metformin. Toxicol Sci. 2021;182:82–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen P, Qadri S, Luukkonen PK, Ragnarsdottir O, McGlinchey A, Jäntti S, Juuti A, Arola J, Schlezinger JJ, Webster TF, Orešič M, Yki-Järvinen H, Hyötyläinen T. Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease. J Hepatol. 2022;76:283–93.

    Article  CAS  PubMed  Google Scholar 

  • Shearer JJ, Callahan CL, Calafat AM, Huang W, Jones RR, Sabbisetti VS, Freedman ND, Sampson JN, Silverman DT, Purdue MP, Hofmann JN. Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma. JNCI. 2020;113:580–7.

    Article  PubMed Central  Google Scholar 

  • Steenland K, Winquist A. PFAS and cancer, a scoping review of the epidemiologic evidence. Environ Res. 2021;194:110690.

    Article  CAS  PubMed  Google Scholar 

  • Tang CY, Fu QS, Criddle CS, Leckie JO. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and Nanofiltration membranes treating Perfluorooctane sulfonate containing wastewater. Environ Sci Technol. 2007;41:2008–14.

    Article  CAS  PubMed  Google Scholar 

  • Tarapore P, Ouyang B. Perfluoroalkyl chemicals and male reproductive health: do PFOA and PFOS increase risk for male infertility? Int J Environ Res Public Health. 2021;18:3794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmermann CAG, Jensen KJ, Nielsen F, Budtz-Jørgensen E, van der Klis F, Benn CS, Grandjean P, Fisker AB. Serum perfluoroalkyl substances, vaccine responses, and morbidity in a cohort of Guinea-Bissau children. Environ Health Perspect. 2020;128:87002.

    Article  CAS  PubMed  Google Scholar 

  • Toni D, Luca CM, Radu IS, Di Nisio A, Dall’Acqua S, Guidolin D, Spampinato S, Campello E, Simioni P, Foresta C. Increased cardiovascular risk associated with chemical sensitivity to perfluoro–octanoic acid: role of impaired platelet aggregation. Int J Mol Sci. 2020;21:399.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tukker AM, Bouwman LMS, van Kleef RGDM, Hendriks HS, Legler J, Westerink RHS. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) acutely affect human α1β2γ2L GABAA receptor and spontaneous neuronal network function in vitro. Sci Rep. 2020;10:5311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varsi K, Huber S, Averina M, Brox J, Bjørke-Monsen AL. Quantitation of linear and branched perfluoroalkane sulfonic acids (PFSAs) in women and infants during pregnancy and lactation. Environ Int. 2022;160:107065.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Li Q, Hou M, Chan LLY, Liu M, Ter SK, Dong T, Xia Y, Chotirmall SH, Fang M. Inactivation of common airborne antigens by perfluoroalkyl chemicals modulates early life allergic asthma. Proc Natl Acad Sci. 2021;118:e2011957118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen L, Lin C, Chou H, Chang C, Lo H, Juan S. Perfluorooctanesulfonate mediates renal tubular cell apoptosis through PPARgamma inactivation. PLoS One. 2016;11:e0155190–e90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa T, Ide T, Shimano H, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Yatoh S, Kitamine T, Okazaki H, Tamura Y, Sekiya M, Takahashi A, Hasty AH, Sato R, Sone H, Osuga J, Ishibashi S, Yamada N. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol Endocrinol. 2003;17:1240–54.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Cheng W, Jia M, Chen L, Gu C, Ren H, Wu B. Toxicity of perfluorooctanoic acid on zebrafish early embryonic development determined by single-cell RNA sequencing. J Hazard Mater. 2022;427:127888.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang F, Zhang Y, Yao J, Bi J, He J, Zhang S, Wei Y, Guo H, Zhang X, He M. Associations of serum PFOA and PFOS levels with incident hypertension risk and change of blood pressure levels. Environ Res. 2022;212:113293.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. Baldwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Baldwin, W.S., Davis, T.T., Eccles, J.A. (2023). Per- and Polyfluoroalkylsubstances (PFAS) and Their Toxicology as Evidenced Through Disease and Biomarkers. In: Patel, V.B., Preedy, V.R., Rajendram, R. (eds) Biomarkers in Toxicology. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-87225-0_67-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87225-0_67-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87225-0

  • Online ISBN: 978-3-030-87225-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Per- and Polyfluoroalkylsubstances (PFAS) and Their Toxicology as Evidenced Through Disease and Biomarkers
    Published:
    08 March 2023

    DOI: https://doi.org/10.1007/978-3-030-87225-0_67-2

  2. Original

    Per- and Polyfluoroalkylsubstances (PFAS) and Their Toxicology as Evidenced Through Disease and Biomarkers
    Published:
    03 August 2022

    DOI: https://doi.org/10.1007/978-3-030-87225-0_67-1