Skip to main content

Multiwall Carbon Nanotubes-Based Micro-fibrillar Polymer Composite Fiber: A Sturctural Biomimetic

  • Reference work entry
  • First Online:
Handbook of Smart Materials, Technologies, and Devices

Abstract

The concept of combining polymers as a matrix material with fiber reinforcement along with nanofillers is a successful three-phase composite reinforcement system. In this context bicomponent composite fiber reinforced with nanofillers has been studied vastly for improving textile products. Bicomponent fibers consist of two or more polymer components within the same filament, with each component existing separately. The major objective of producing bicomponent fibers develops the abilities not existing in either polymer alone. An advanced method of processing the so-called micro-fibrillar fiber/micro-fibrillar reinforced composite (MFC) concept was created about 20 years ago. Unlike classical macro-composite (viz. glass fiber reinforced one) or in situ composite (Thermotropic Liquid Crystalline Polymer macromolecules), MFC are micro-fibrils of fibril chains which in turn are created during MFC manufacturing. The mechanical properties of composite depend on the effective adhesion ability of filler and matrix which in turn depends on higher aspect ratio which is positively attained in MFC. In order to create high performance fibers with unique properties the accumulation of MFC concept with nanofillers like carbon nanotubes form one of the most interesting material presenting traditional paradigm with newer approach having structural biomimetic with plant cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bartlett MD, Crosby AJ (2014) High capacity, easy release adhesives from renewable materials. Adv Mater 26(21):3405–3409

    Article  Google Scholar 

  • Bhattacharya M (2016) Polymer nanocomposites – a comparison between carbon nanotubes, graphene, and clay as Nanofillers. Materials 9:262

    Article  Google Scholar 

  • Bigdeli A et al (2016) Relationship between dye sorption and morphology in polypropylene/poly (butylene terephthalate) microfibrillar blend nanocomposite fibers. J Text Inst 107(6):774–783

    Article  Google Scholar 

  • Bortz DR, Merino C, Martin-Gullon I (2011) Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system. Compos Sci Technol 71(1):31–38

    Article  Google Scholar 

  • Chapman R, Mulvaney P (2001) Electro-optical shifts in silver nanoparticle films. Chem Phys Lett 349(5–6):358–362

    Article  Google Scholar 

  • Chaudhary A, Kumari S, Kumar R, Teotia S, Singh BP, Singh AP, Dhawan SK, Dhakate SR (2016) Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces 8(16):10600–10608

    Article  Google Scholar 

  • Chisholm N et al (2005) Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites. Compos Struct 67(1):115–124

    Article  MathSciNet  Google Scholar 

  • Dai K, Xu X-B, Li Z-M (2007) Electrically conductive carbon black (CB) filled in situ microfibrillar poly (ethylene terephthalate)(PET)/polyethylene (PE) composite with a selective CB distribution. Polymer 48(3):849–859

    Article  Google Scholar 

  • Endo M (2010) Carbon nanotubes: state of the art technology and saftey for success. Indian J Eng and Mat Sci 17(5):317–320

    Google Scholar 

  • Fakirov S (2013) Nano and microfibrillar single polymer composites: a review. Macromol Mater Eng 298(1):9–32

    Article  Google Scholar 

  • Fakirov S, Bhattacharyya D (2005) Nanofibrillar-, microfibrillar- and microplates reinforced composites – new advanced materials from polymerblends for technical, commodity and medical applications. In: Proceedings of the 21st annual meeting of the polymer processing society (PPS 21), Leipzig, Germany, (June 19–23, 2005)

    Google Scholar 

  • Fakirov S et al (2007) Contribution of coalescence to microfibril formation in polymer blends during cold drawing. J Macromol Sci Part B: Phys 46(1):183–194

    Article  Google Scholar 

  • Fakirov S, Rahman MZ, Pötschke P, Bhattacharyya D (2013) Single polymer composites of poly(butylene terephthalate) microfibrils loaded with carbon nanotubes exhibiting electrical conductivity and improved mechanical properties. Macromol Mater Eng. https://doi.org/10.1002/mame.201300322

  • Friedrich K, Ueda E, Kamo H, Evstatiev M, Krasteva B, Fakirov S (2002) Direct electron microscopic observation of trans crystalline layers in microfibrillar reinforced polymer-polymer composites. J Mater Sci 37:4299–4305

    Article  Google Scholar 

  • Grof M, Sain M, Durcova O (1992) Structure-property relationship of modified polypropylene-polycaproamide fiber. J Appl Polym Sci 44:106–1068

    Article  Google Scholar 

  • Han JW, Kim B, Li J, Meyyappan M (2014) A carbon nanotube based ammonia sensor on cellulose paper. RSC Adv 4:549

    Article  Google Scholar 

  • HaniumMaria K, Mieno T (2017) Production and properties of carbon nanotube/cellulose composite paper. J Nanomater 2017:Article ID 6745029, 11 pages

    Google Scholar 

  • Heidari Golfazani ME et al (2012) The role of nanoclay partitioning on microfibril morphology development in polypropylene/polyamide 6 nanocomposite fibers. J Macromol Sci, Part B 51(5):956–967

    Article  Google Scholar 

  • Hossain MK et al (2011) Flexural and compression response of woven E-glass/polyester–CNF nanophased composites. Compos A: Appl Sci Manuf 42(11):1774–1782

    Article  Google Scholar 

  • Huitric J et al (2017) Solid-state morphology, structure, and tensile properties of polyethylene/polyamide/nanoclay blends: effect of clay fraction. Polym Test 58:96–103

    Article  Google Scholar 

  • Hwang SH, Park HW, Park YB, Um MK, Byun JH, Kwon S (2013) Electromechanical strain sensing using polycarbonate-impregnated carbon nanotube–graphene Nano platelet hybrid composite sheets. Compos Sci Technol 89:1–9

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  • Jogi BF, Bhattacharyya AR, Poyekar AV, Pötschke P, Simon GP, Kumar S (2015) The simultaneous addition of styrene maleic anhydride copolymer and multiwall carbon nanotubes during melt-mixing on the morphology of binary blends of polyamide6 and acrylonitrile butadiene styrene copolymer. Polym Eng Sci 55:457–465

    Article  Google Scholar 

  • Kelnar I et al (2016) Effect of halloysite on structure and properties of melt-drawn PCL/PLA microfibrillar composites. Express Polym Lett 10(5):381

    Article  Google Scholar 

  • Kelnar I et al (2017) J-integral evaluation of nanoclay-modified HDPE/PA6 microfibrillar composites. Polym Test 58:54–59

    Article  Google Scholar 

  • Khatwani PA, Yardi SS (2003) Bicomponent fibers: fibers of modern era. Man-Made Text India 46:19–23

    Google Scholar 

  • Kikutani T et al (1996) High-speed melt spinning of bicomponent fibers: mechanism of fiber structure development in poly (ethylene terephthalate)/polypropylene system. J Appl Polym Sci 62(11):1913–1924

    Article  Google Scholar 

  • Kumar S et al (2014) Effects of nanomaterials on polymer composites-an expatiate view. Rev Adv Mater Sci 38:1

    Google Scholar 

  • Laforgue A, Champagne MF, Dumas J, Robitaille L (2012) Melt-processing and properties of coaxial fibers incorporating carbon nanotubes. J Eng Fibers Fabrics 7(3):118–124

    Google Scholar 

  • Lee SM, Shin MW, Jang H (2014) Effect of carbon-nanotube length on friction and wear of polyamide 6,6 nanocomposites. Wear 320:103–110

    Article  Google Scholar 

  • Li Z et al (2016) Effect of nanoparticles on fibril formation and mechanical performance of olefinic block copolymer (OBC)/polypropylene (PP) microfibrillar composites. RSC Adv 6(89):86520–86530

    Article  Google Scholar 

  • Liang BR, White JL, Spruiell JE, Goswami BC (1983) Polypropylene/nylon 6 blends: phase distribution morphology, rheological measurements, and structure development in melt spinning. J Appl Polym Sci 28:2011–2032

    Article  Google Scholar 

  • Lin L, Liu S, Zhang Q, Li X, Ji M, Deng H, Fu Q (2013) Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer. ACS Appl Mater Interfaces 5:5815–5824

    Article  Google Scholar 

  • Liu T, Wang Q, Xie Y, Lee S, Wu Q (2014a) Effects of use of coupling agents on the properties of microfibrillar composite based on high-density polyethylene and polyamide-6. Polym Bull 71:685–703

    Article  Google Scholar 

  • Liu W, Nie M, Wang Q (2014b) In-situ micro-fibrillation of polystyrene (PS)/polybutene-1 (PB-1) composites prepared via melt drawing: morphological evolution and properties. J Polym Res 21:489

    Article  Google Scholar 

  • Liu Y, Su Y, Cao J, Guan J, Xu L, Zhang R, He M, Zhang Q, Fan L, Jiang Z (2017a) Synergy of the mechanical, antifouling and permeation properties of a carbon nanotube nanohybrid membrane for efficient oil/water separation. Nanoscale 9:7508–7518

    Article  Google Scholar 

  • Liu Y et al (2017b) Effect of nanoparticles on the morphology and properties of PET/PP in situ microfibrillar reinforced composites. Polym Compos 38(12):2718–2726

    Article  Google Scholar 

  • Luyt AS, Kelnar I (2017) Effect of halloysite nanotubes on the thermal degradation behaviour of poly (ε-caprolactone)/poly (lactic acid) microfibrillar composites. Polym Test 60:166–172

    Article  Google Scholar 

  • Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A: Appl Sci Manuf 41:1345–1367

    Article  Google Scholar 

  • Micusik M, Omastova M, Krupa I, Prokes J, Pissis P, Logakis E, Pandis P, Potschke P, Pionteck J (2009) A comparative study on the electrical and mechanical behaviour of multi-walled carbon nanotube composite prepared by diluting a masterbatch with various types of polypropylenes. J Appl Polym Sci 113:2536–2551

    Article  Google Scholar 

  • Mishra RK et al (2020) An efficient fabrication of polypropylene hybrid nanocomposites using carbon nanotubes and PET fibrils. Mater Today Proc 29:794

    Article  Google Scholar 

  • Moradi S, Yeganeh JK (2020) Highly toughened poly (lactic acid)(PLA) prepared through melt blending with ethylene-co-vinyl acetate (EVA) copolymer and simultaneous addition of hydrophilic silica nanoparticles and block copolymer compatibilizer. Polym Test 91:106735

    Article  Google Scholar 

  • Murphy M, Aksak B, Sitti M (2007) Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhes Sci Technol 21(12):1281–1296

    Article  Google Scholar 

  • Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32(3):335–349

    Article  Google Scholar 

  • Pan J, Bian L (2017) Influence of agglomeration parameters on carbon nanotube composites. Acta Mech 228(6):2207–2217

    Article  Google Scholar 

  • Paretkar D, Kamperman M, Martina D, Zhao J, Creton C, Lindner A, Jagota A, McMeeking R, Arzt E (2013) Preload-responsive adhesion: effects of aspect ratio, tip shape and alignment. J R Soc Interface 10(83):No. 20130171

    Article  Google Scholar 

  • Patanaik A et al (2007) Nanotechnology in fibrous materials–a new perspective. Text Prog 39(2):67–120

    Article  Google Scholar 

  • Plavan VP et al (2020) Influence of aluminum oxide nanoparticles on formation of the structure and mechanical properties of microfibrillar composites. Mech Compos Mater 56(3):319–328

    Article  Google Scholar 

  • Prolongo SG, Meliton BG, Del Rosario G, Ureña A (2013) New alignment procedure of magnetite–CNT hybrid nanofillers on epoxy bulk resin with permanent magnets. Compos Part B 46:166–172

    Article  Google Scholar 

  • Richter DA (2004) Proceedings of the 2004 Beltwide cotton conferences, San Antonio, Texas, USA, 5–9 January 2004. National Cotton Council

    Google Scholar 

  • Rizvi A, Andalib Z, Park CB (2017) Fiber-spun polypropylene/polyethylene terephthalate microfibrillar composites with enhanced tensile and rheological properties and foaming ability. Polymer 110:139. https://doi.org/10.1016/j.polymer.2016.12.054

    Article  Google Scholar 

  • Sambarkar PP, Patwekar SL, Dudhgaonkar BM (2012) Polymer nanocomposites: an overview. Int J Pharm Pharm Sci 4(2):60–65

    Google Scholar 

  • Schaefer DW, Justice RS (2007) How nano are nanocomposites? Macromolecules 40:8501

    Article  Google Scholar 

  • Sengupta R, Ganguly A, Sabharwal S, Chaki TK, Bhowmick AK (2007) MWCNT reinforced Polyamide-6,6 films: preparation, characterization and properties. J Mater Sci 42:923–934

    Article  Google Scholar 

  • Soroudi A, Skrifvars M (2011) The influence of matrix viscosity on properties of polypropylene/polyaniline composite fibers – rheological, electrical, and mechanical characteristics. J Appl Polym Sci 119(5):2800–2807

    Article  Google Scholar 

  • Špírková M, Duszová A, Poreba R, Kredatusová J, Bureš R, Fáberová M, Šlouf M (2014) Thermoplastic polybutadiene-based polyurethane/carbon nanofiber composites. Compos Part B 67:434–440

    Article  Google Scholar 

  • Steinmann W et al (2013) Thermal analysis of phase transitions and crystallization in polymeric fibers. In: Applications of calorimetry in a wide context–differential scanning calorimetry, isothermal titration calorimetry and microcalorimetry, vol 12. Intech, pp 279–305

    Google Scholar 

  • Strååt M et al (2011) Melt spinning of conducting polymeric composites containing carbonaceous fillers. J Appl Polym Sci 119(6):3264–3272

    Article  Google Scholar 

  • Tambe PB et al (2012) Structure–property relationship studies in amine functionalized multiwall carbon nanotubes filled polypropylene composite fiber. Polym Eng Sci 52(6):1183–1194

    Article  Google Scholar 

  • Thanh TD et al (2014) Effect of graphite nanoplatelets on the structure and properties of PA6-elastomer nanocomposites. Eur Polym J 50:39–45

    Article  Google Scholar 

  • Tiwari N, Agarwal N, Roy D, Mukhopadhyay K, Prasad NE (2017) Tailor made conductivities of polymer matrix for thermal management: design and development of three-dimensional carbonaceous nanostructures. Ind Eng Chem Res 56:672–679

    Article  Google Scholar 

  • Wagner D, Vaia R (2004) Nanocomposites: issues at the interface. Mater Today 7:38–42. ISSN: 1369 7021 © Elsevier Ltd

    Article  Google Scholar 

  • Wang J, Zhang X, Zhao T, Shen L, Wu H, Guo S (2014) Morphologies and properties of polycarbonate/polyethylene in situ microfibrillar composites prepared through multistage stretching extrusion. J Appl Polym Sci. https://doi.org/10.1002/APP.40108

  • Woo RSC et al (2008) Barrier performance of silane–clay nanocomposite coatings on concrete structure. Compos Sci Technol 68(14):2828–2836

    Article  Google Scholar 

  • Xie Y, He C, Liu L, Mao L, Wang K, Huang Q, Liu M, Wan Q, Deng F, Huang H, Zhang X, Wei Y (2015) Carbon nanotube based polymer nanocomposites: biomimic preparation and organic dye adsorption applications. RSC Adv 5:82503–82512

    Article  Google Scholar 

  • Xu XB, Li ZM, Yang MB, Jiang S, Huang R (2005) The role of the surface microstructure of the microfibrils in an electrically conductive microfibrillar carbon black/poly (ethylene terephthalate)/ polyethylene composite. Carbon 43:1479–1487

    Article  Google Scholar 

  • Yesil S, Koysuren O, Bayram G (2010) Effect of microfiber reinforcement on the morphology, electrical, and mechanical properties of the polyethylene/poly(ethylene terephthalate)/ carbon nanotube composites. Polym Eng Sci 50(11):2093–2105

    Article  Google Scholar 

  • Zang Q, Jin H, Wang X, Jing X (2011) Morphology of conductive blends fibers of polyaniline and polyamide – 11. Synth Met 123:481–485

    Article  Google Scholar 

  • Zhang J, Lin T, Wang X (2010) Electrospun nanofibre toughened carbon/epoxy composites: effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness. Compos Sci Technol 70(11):1660–1666

    Article  Google Scholar 

  • Zhao H, Li RKY (2008) Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Compos A: Appl Sci Manuf 39(4):602–611

    Article  MathSciNet  Google Scholar 

  • Zhu J, Cao W, Yue M, Hou Y, Han J, Yang M (2015) Strong and stiff aramid nanofiber/carbon nanotube nanocomposites. ACS Nano 9(3):2489–2501

    Article  Google Scholar 

  • Zou J, Yip H, Hau S, Alex K (2010) Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Appl Phys Lett 96:203301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Agrawal, N., Aggarwal, M., Mukhopadhyay, K., Bhattacharyya, A.R. (2022). Multiwall Carbon Nanotubes-Based Micro-fibrillar Polymer Composite Fiber: A Sturctural Biomimetic. In: Hussain, C.M., Di Sia, P. (eds) Handbook of Smart Materials, Technologies, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-84205-5_117

Download citation

Publish with us

Policies and ethics