Skip to main content

Applications of Viral Vectors for Cancer Immunotherapy

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology
  • 76 Accesses

Abstract

Viral vectors have been frequently applied for cancer therapy including adenoviruses, adeno-associated viruses, herpes simplex viruses, retroviruses, lentiviruses, alphaviruses, flaviviruses, measles viruses, rhabdoviruses, vaccinia viruses, Newcastle disease viruses, poxviruses, coxsackieviruses, reoviruses, and polyoma viruses. Viral vector-based cancer therapy has included delivery of anti-tumor, toxic, and suicide genes, tumor-associated antigens (TAAs), and immunostimulatory genes. Attenuated and oncolytic viruses, either engineered or naturally occurring, have played an important role in cancer therapy. Numerous studies in various animal models have demonstrated immune responses against TAAs and protection against tumor challenges. Moreover, tumor regression and eradication and cure have been achieved in animals with preexisting tumors. Clinical trials have also showed safety and efficacy. The adenovirus-based drug Gendicine® has been approved for non-small cell lung cancer, Oncorine® for nasopharyngeal carcinoma, the herpes simplex virus-based T-VEC drug for the treatment of melanoma, and reovirus-based Reolysin for ovarian and pancreatic cancer and malignant glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Al Yaghchi C, Zhang Z, Alusi G et al (2015) Vaccinia virus, a promising new therapeutic agent for pancreatic cancer. Immunotherapy 7:1249–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apostolidis L, Schirrmacher V, Fournier P (2007) Host mediated anti-tumor effect of oncolytic Newcastle disease virus after locoregional application. Int J Oncol 31:1009–1019

    CAS  PubMed  Google Scholar 

  • Armstrong CA, Botella R, Galloway TH et al (1996) Antitumor effects of granulocyte-macrophage colony-stimulating factor production by melanoma cells. Cancer Res 56:2191–2198

    CAS  PubMed  Google Scholar 

  • Atkins MB, Lotze MT, Dutcher JP et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116

    Article  CAS  PubMed  Google Scholar 

  • Bai F, Niu Z, Tian H et al (2014) Genetically engineered Newcastle disease virus expressing interleukin2 is a potential drug candidate for cancer immunotherapy. Immunol Lett 159:36–46

    Article  PubMed  Google Scholar 

  • Berraondo P, Sanmamed MF, Ochoa MC et al (2019) Cytokines in clinical cancer immunotherapy. Br J Cancer 120:6–15

    Article  CAS  PubMed  Google Scholar 

  • Boisgerault N, Guillerme JB, Pouliquen D et al (2013) Natural oncolytic activity of live-attenuated measles virus against human lung and colorectal adenocarcinomas. Biomed Res Int 2013:387362

    Article  PubMed  PubMed Central  Google Scholar 

  • Bommareddy PK, Patel A, Hossain S et al (2017) Talimogene Laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. J Clin Dermatol 18:1–15

    Article  Google Scholar 

  • Bradley S, Jakes AD, Harrington K et al (2014) Applications of coxsackievirus A21 in oncology. Oncol Virother 3:47–55

    Article  CAS  Google Scholar 

  • Cerullo V, Koski A, Vähä-Koskela M et al (2012) Chapter Eight – oncolytic adenoviruses for cancer immunotherapy: data mice, hamsters, and humans. Adv Cancer Res 115:265–318

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Wang W, Xu Q et al (2016) Genetic modification of oncolytic Newcastle disease virus for cancer therapy. J Virol 90:5343–5352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi J, Patel R, Rehman H et al (2020) Recent advances in immunotherapy for pancreatic cancer. J Cancer Metastasis Treat 6:43

    CAS  Google Scholar 

  • Choi AH, O’Leary MP, Chaurasiya S et al (2018) Novel chimeric parapoxvirus CF189 as an oncolytic immunotherapy in triple-negative breast cancer. Surgery 163:336–342

    Article  PubMed  Google Scholar 

  • Clements D, Helson E, Gujar SA et al (2014) Reovirus in cancer therapy: an evidence-based review. Oncol Virother 3:69–82

    CAS  Google Scholar 

  • Cloughesy TF, Landolfi J, Hogan DJ et al (2016) Phase I trial of vocimagine amiroretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci Transl Med 8:341–375

    Article  Google Scholar 

  • Collins SA, Guinn B-A, Harrison PT et al (2008) Viral vectors in cancer immunotherapy: which vector for which strategy? Curr Gene Ther 8:66–78

    Article  CAS  PubMed  Google Scholar 

  • Comins C, Heinemann L, Harrington K et al (2008) Reovirus: viral therapy for cancer “as nature intended”. Clin Oncol (R Coll Radiol) 20:548–554

    Article  CAS  PubMed  Google Scholar 

  • Cordelier P, Bienvenu C, Lulka H et al (2007) Replication-deficient rSV40 mediate pancreatic gene transfer and long-term inhibition of tumor growth. Cancer Gene Ther 14:19–29

    Google Scholar 

  • Davis NL, Willis LV, Smith JF et al (1989) In vitro synthesis of infectious Venezuelan equine encephalitis virus RNA from a cDNA clone: analysis of a viable deletion mutant. Virology 171:189–204

    Article  CAS  PubMed  Google Scholar 

  • Demidenko AA, Blattman JN, Blattman NN et al (2013) Engineering recombinant reovirus with 1365 tandem repeats and a tetravirus 2A-like element for exogenous polyprotein expression. Proc Natl Acad Sci U S A 110:E1867–E1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias JD, Hemminki O, Diaconu I et al (2012) Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Ther 19:988–998

    Article  CAS  PubMed  Google Scholar 

  • Dobrikova EY, Broadt T, Poiley-Nelson J et al (2008) Recombinant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol Ther 16:1865–1872

    Article  CAS  PubMed  Google Scholar 

  • Downs-Canner S, Guo ZS, Ravindranathan R et al (2016) Phase I study of intravenous oncolytic 1373 poxvirus (vvDD) in patients with advanced solid cancers. Mol Ther 24:1492–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dullaers M, Van Meirvenne S, Heirman C et al (2006) Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Ther 13:630–640

    Article  CAS  PubMed  Google Scholar 

  • Ehrke-Schulz E, Zhang W, Schiwon M et al (2016) Cloning and large-scale production of high-capacity adenoviral vectors based on the human adenovirus type 5. J Vis Exp 107:e52894

    Google Scholar 

  • Eissa IR, Naoe Y, Bustos-Villalobos I et al (2017) Genomic signature of the natural oncolytic herpes simplex virus HF10 and its therapeutic role in preclinical and clinical trials. Front Oncol 7:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Epstein AL, Marconi P, Argnani R et al (2005) HSV-1 derived recombinant and amplicon vectors for gene transfer and gene therapy. Curr Gene Ther 5:445–458

    Article  CAS  PubMed  Google Scholar 

  • Etoh T, Himenio Y, Matusmoto T et al (2003) Oncolytic viral therapy for human pancreatic cancer 1388 cells by reovirus. Clin Cancer Res 9:1218–1223

    CAS  PubMed  Google Scholar 

  • Foy SP, Sennino B, dela Cruz T et al (2016) Poxvirus-based active immunotherapy with PD-1 and LAG-3 dual immune checkpoint inhibition overcomes compensatory immune regulation, yielding complete tumor regression in mice. PLoS One 11:e0150084

    Article  PubMed  PubMed Central  Google Scholar 

  • Frolov I, Hoffman TA, Pragal BM et al (1996) Alphavirus-based expression vectors: strategies and applications. Proc Natl Acad Sci U S A 93:11371–11377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuhara H, Ino Y, Todo T (2016) Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci 107:1373–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fyfe G, Fisher RI, Rosenberg SA et al (1995) Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 13:688–696

    Article  CAS  PubMed  Google Scholar 

  • Galanis E, Hartmann LC, Cliby WA et al (2010) Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res 70:875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galanis E, Markovic SN, Suman VJ et al (2012) Phase II trial of intravenous administration of Reolysin (Reovirus Serotype-3-dearing Strain) in patients with metastatic melanoma. Mol Ther 20:1998–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganar K, Das M, Sinha S et al (2014) Newcastle disease virus: current status and our understanding. Virus Res 184:71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gherke R, Ecker M, Aberle SW et al (2003) Incorporation of tick-borne encephalitis virus replicons into virus-like particles by a packaging cell line. J Virol 77:8924–8933

    Article  Google Scholar 

  • Golomb HM, Jacobs A, Fefer A et al (1986) Alpha-2 interferon therapy of hairy-cell leukemia: a multicenter study of 64 patients. J Clin Oncol 4:900–905

    Article  CAS  PubMed  Google Scholar 

  • Granot T, Meruelo D (2012) The role of natural killer cells in combinatorial anti-cancer therapy using Sindbis viral vector and irinotecan. Cancer Gene Ther 19:588–591

    Article  CAS  PubMed  Google Scholar 

  • Green NK, McNeish IA, Doshi R et al (2003) Immune enhancement of nitroreductase cytotoxicity: studies using a bicistronic adenovirus vector. Int J Cancer 104:104–112

    Article  CAS  PubMed  Google Scholar 

  • Gromeier M, Alexander L, Wimmer E (1996) Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci U S A 93:2370–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gujar SA, Marcato P, Pan D et al (2010) Reovirus virotherapy overrides tumor antigen presentation evasion and promotes protective antitumor immunity. Mol Cancer Ther 9:2924–2933

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Garrigue A, Wang GP et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Investig 118:3132–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haghighi-Najafabadi N, Roohvand F, Nosrati MSS et al (2021) Oncolytic herpes simplex virus type-1 expressing IL-12 efficiently replicates and kills human colorectal cancer cells. Microb Pathog 160:105164

    Article  CAS  PubMed  Google Scholar 

  • Heikkilä JE, Vähä-Koskela MJ, Ruotsalainen JJ et al (2010) Intravenously administered alphavirus vector VA7 eradicates orthotopic human glioma xenografts in nude mice. PLoS One 5:e8603

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinzerling L, Kunzi V, Oberholzer PA et al (2005) Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon resistant tumor cells. Blood 106:2287–2294

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa K, Nishikawa SG, Norman KL et al (2002) Oncolytic reovirus against ovarian and colon cancer. Cancer Res 62:1696–1701

    CAS  PubMed  Google Scholar 

  • Hirasawa K, Nishikawa SG, Norman KL et al (2003) Systemic reovirus therapy of metastatic cancer in immune-competent mice. Cancer Res 63:348–353

    CAS  PubMed  Google Scholar 

  • Hirooka Y, Kasuya H, Ishikawa T et al (2018) A phase I clinical trial of EUS-guided intratumoral injection of the oncolytic virus, HF10 for unresectable locally advanced pancreatic cancer. BMC Cancer 18:596

    Article  PubMed  PubMed Central  Google Scholar 

  • Holl EK, Brown MC, Boczkowski D et al (2016) Recombinant oncolytic poliovirus, PVSRIPO, has potent cytotoxic and innate inflammatory effects, mediating therapy in human breast and prostate cancer xenograft models. Oncotarget 7:79828–79841

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes KD, Cassam AK, Chan B et al (2000) A multi-mutant herpes simplex virus vector has minimal cytotoxic effects on the distribution of filamentous actin, alpha-actinin and a glutamate receptor in differentiated PC-12 cells. J Neurovirol 6:33–45

    Article  CAS  PubMed  Google Scholar 

  • Hu WS, Pathak VK (2000) Design of retroviral vectors and helper cells for gene therapy. Pharmacol Rev 52:493–511

    CAS  PubMed  Google Scholar 

  • Inoko K, Hiraoka K, Inagaki A et al (2018) Therapeutic activity of retroviral replicating vector-mediated prodrug activator gene therapy for pancreatic cancer. Cancer Gene Ther 25:184–195

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki H, Manuel ER, Song GY et al (2011) Modified vaccinia Ankara expressing survivin combined with gemcitabine generates specific antitumor effects in a murine pancreatic carcinoma model. Cancer Immunol Immunother 60:99–109

    Article  CAS  PubMed  Google Scholar 

  • Jia Q, Liang F, Ohka S et al (2002) Expression of brain-derived neurotrophic factor in the central 1562 nervous system of mice using a poliovirus-based vector. J Neurovirol 8:14–23

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Zhang Y, Peng K et al (2017) Combined delivery of TGF-beta inhibitor and an adenoviral vector expressing interleukin-12 potentiates cancer immunotherapy. Acta Biomater 61:114–123

    Article  CAS  PubMed  Google Scholar 

  • John LB, Howland LJ, Flynn JK et al (2012) Oncolytic virus and anti-4–1BB combination therapy elicits strong antitumor immunity against established cancer. Cancer Res 72:1651–1660

    Article  CAS  PubMed  Google Scholar 

  • Jones M, Davidson A, Hibbert L et al (2005) Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol 79:5414–5420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasuya H, Kodera Y, Nakao A et al (2014) Phase I dose-escalation clinical trial of HF10 oncolytic herpes virus in 17 Japanese patients with advanced cancer. Hepato-Gastroenterology 61:599–605

    PubMed  Google Scholar 

  • Kawaguchi K, Etoh T, Suzuki K et al (2010) Efficacy of oncolytic reovirus against human gastric cancer with peritoneal metastasis in experimental animal model. Int J Oncol 37:1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Kim D-S, Nam J-H (2011) Application of attenuated coxsackievirus B3 as viral vector system for vaccines and gene therapy. Hum Vaccin 7:410–416

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Majumder N, Lin H et al (2005) Induction of therapeutic antitumor immunity by in vivo administration of a lentiviral vaccine. Hum Gene Ther 16:1255–1266

    Article  CAS  PubMed  Google Scholar 

  • Kimchi-Sarfaty C, Gottesman MM (2004) SV40 pseudovirions as highly efficient vectors for gene transfer and their potential application in cancer therapy. Curr Pharm Biotechnol 5:451–458

    Google Scholar 

  • Kimura T, Ohashi T, Kikuchi T et al (2003) Antitumor immunity against bladder cancer induced by ex vivo expression of CD40 ligand gene using retrovirus vector. Cancer Gene Ther 10:833–839

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood JM, Strawderman MH, Ernstoff MS et al (1996) Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST. J Clin Oncol 14:7–17

    Google Scholar 

  • Kramer MG, Masner M, Casales E et al (2015) Neoadjuvant administration of Semliki Forest virus expressing interleukin-12 combined with attenuated Salmonella eradicates breast cancer metastasis and achieves long-term survival in immunocompetent mice. BMC Cancer 15:620

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwak H, Honig H, Kaufman HL (2003) Poxviruses as vectors for cancer immunotherapy. Curr Opin Drug Discov Devel 6:161–168

    CAS  PubMed  Google Scholar 

  • Lang FF, Conrad C, Gomez-Manzano C et al (2018) Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 36:1419–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JM, Kao KC, Li LF (2013) Micro-RNA-145 regulates oncolytic herpes simplex virus-1 for selective killing of human non-small lung cancer cells. Virol J 10:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang W, Wang H, Sun TM et al (2003) Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive tract. World J Gastroenterol 9:495–498

    Article  PubMed  PubMed Central  Google Scholar 

  • Liljestrom P, Garoff H (1991) A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology 9:1356–1361

    Article  CAS  PubMed  Google Scholar 

  • Liu J-Q, Zhu J, Hu A et al (2020) Is AAV-delivered IL-27 a potential immunotherapeutic for cancer? Am J Cancer Res 10:3565–3574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lundstrom K (2021a) Viral vector-based vaccines against SARS-CoV-2. Explor Immunol 1:295–308

    Article  CAS  Google Scholar 

  • Lundstrom K (2021b) Self-replicating RNA viruses for vaccine development against infectious diseases and cancer. Vaccine 9:1187

    Article  CAS  Google Scholar 

  • Lundstrom K (2022) Application of viruses for gene therapy and vaccine development. In: Hurst CJ (ed) The biological role of a virus, Adv Envir Microbiol 9. Springer Nature, Cham, pp 285–341

    Chapter  Google Scholar 

  • Lyons JA, Sheahan BJ, Galbraith SE et al (2007) Inhibition of angiogenesis by a Semliki Forest virus vector expressing VEGFR-2 reduces tumour growth and metastasis in mice. Gene Ther 14:503–513

    Google Scholar 

  • Ma W, He H, Wang H (2018) Oncolytic herpes simplex virus and immunotherapy. BMC Immunol 19:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahalingam D, Goel S, Aparo S et al (2018) A phase II study of Pelareorep (REOLYSIN®) in combination with gemcitabine for patients with advanced pancreatic adenocarcinoma. Cancers 10:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Mastrangelo MJ, Lattime EC (2002) Virotherapy clinical trials for regional disease: in situ immune 1703 modulation using recombinant poxvirus vectors. Cancer Gene Ther 9:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • McAllister A, Arbetman AE, Mandl S et al (2000) Recombinant yellow fever viruses are effective therapeutic vaccines for treatment of murine solid tumors and pulmonary metastases. J Virol 74:9197–9205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormack MP, Rabbitts TH (2004) Activation of the T-cell oncogene LMO2 after gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 350:913–922

    Article  CAS  PubMed  Google Scholar 

  • Molenkamp R, Kooi EA, Lucassen MA et al (2003) Yellow fever virus replicons as an expression system for hepatitis C virus structural proteins. J Virol 77:1644–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morante V, Borghi M, Farina I et al (2021) Integrase-defective lentiviral vector is an efficient vaccine platform for cancer immunotherapy. Viruses 13:355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostafa AA, Meyers DE, Thirukkumaran CM et al (2018) Oncolytic reovirus and immune checkpoint inhibitor as a novel immunotherapeutic strategy for breast cancer. Cancers 10:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Mühlebach MD, Hutzler S (2017) Development of recombinant measles virus-based vaccines. Methods Mol Biol 1581:151–168

    Article  PubMed  Google Scholar 

  • Myers R, Harvey M, Kaufmann TJ et al (2008) Toxicology study of repeat intracerebral administration of a measles virus derivative producing carcinoembryonic antigen in rhesus monkeys in support of a phase I/II clinical trial for patients with recurrent gliomas. Hum Gene Ther 19:690–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nienhuis AW, Nathwani AC, Davidoff AM (2017) Gene therapy for hemophilia. Mol Ther 25:1163–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh T, Fakurnejad S, Sayegh ET et al (2014) Immunocompetent murine models for the study of glioblastoma immunotherapy. J Transl Med 12:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldham RA, Berinstein EM, Medin JA (2015) Lentiviral vectors in cancer immunotherapy. Immunotherapy 7:271–284

    Article  CAS  PubMed  Google Scholar 

  • Olson B, Li Y, Lin Y et al (2018) Mouse models for cancer immunotherapy research. Cancer Discov 8:1358–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakada F, Callaway EM (2013) Design and generation of recombinant rabies virus vectors. Nat Protoc 8:1583–1601

    Google Scholar 

  • Palmowski MJ, Lopes L, Ikeda Y et al (2004) Intravenous injection of a lentiviral vector encoding NY-ESO-1 induces an effective CTL response. J Immunol 172:1582–1587

    Article  CAS  PubMed  Google Scholar 

  • Pandya J, Ortiz L, Ling C et al (2014) Rationally designed capsid and transgene cassette of AAV6 vectors for dendritic cell-based cancer immunotherapy. Immunol Cell Biol 92:116–123

    Article  CAS  PubMed  Google Scholar 

  • Park K, Kim WJ, Cho YH et al (2008) Cancer gene therapy using adeno-associated virus vectors. Front Biosci 13:2653–2659

    Article  CAS  PubMed  Google Scholar 

  • Park M-Y, Kim DR, Jung HW et al (2010) Genetic immunotherapy of lung cancer using conditionally replicating adenovirus and adenovirus-interferon-beta. Cancer Gene Ther 17:356–364

    Article  CAS  PubMed  Google Scholar 

  • Pastoret P-P, Vanderplasschen A (2003) Poxviruses as vaccine vectors. Comp Immunol Microbiol Infect Dis 26:343–355

    Article  PubMed  Google Scholar 

  • Patel MR, Jacobson BA, Ji Y et al (2015) Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget 6:33165–33177

    Google Scholar 

  • Pecora AL, Rizvi N, Cohen GI et al (2002) Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 20:2251–2266

    Google Scholar 

  • Petrulio CA, Kaufman HL (2006) Developmnet of the panva-vf vaccine for pancreatic cancer. Expert Rev Vaccines 5:9–19

    Article  CAS  PubMed  Google Scholar 

  • Pijlman GP, Suhrbier A, Khromykh AA (2006) Kunjin virus replicons: an RNA-based non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Expert Opin Biol Ther 6:134–145

    Article  Google Scholar 

  • Pol JG, Zhang L, Bridle BW, Stephenson KB, Resséquier J, Hanson S et al (2014) Maraba virus as a potent oncolytic vaccine vector. Mol Ther 22:420–429

    Article  CAS  PubMed  Google Scholar 

  • Radecke F, Spielhofer P, Schneider H et al (1995) Rescue of measles viruses from cloned DNA. EMBO J 14:5773–5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichard K, Lorence RM, Cascino CJ et al (1992) Newcastle disease virus selectively kills human tumor cells. J Surg Res 52:448–453

    Article  CAS  PubMed  Google Scholar 

  • Relph K, Annels N, Smith C et al (2020) Oncolytic immunotherapy for bladder cancer using Coxsackie A21 virus using a bladder tumor precision-cut slice model system to assess viral efficacy. Mol Biol 2058:249–259

    Google Scholar 

  • Ren H, Boulikas T, Lundstrom K et al (2003) Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication-incompetent Semliki Forest virus vector carrying the human interleukin-12 gene – a phase I/II clinical protocol. J Neuro-Oncol 64:147–154

    Article  CAS  Google Scholar 

  • Ricobaraza A, Gonzalez-Aparicio M, Mora-Jimenez L et al (2020) High-capacity adenovirus vectors: expanding the scope of gene therapy. Int J Mol Sci 21:3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roner MR, Joklik WK (2001) Reovirus reverse genetics: incorporation of the CAT gene into the reovirus genome. Proc Natl Acad Sci U S A 98:8036–8041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha D, Martuza RI, Rabkin SD (2017) Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell 32:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakata M, Tani H, Anraku M et al (2017) Analysis of VSV pseudotype virus infection mediated by rubella virus envelope proteins. Sci Rep 7:11607

    Google Scholar 

  • Samulski R, Muzycka N (2014) AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 1:427–451

    Article  PubMed  Google Scholar 

  • Sborov DW, Nuovo GJ, Stiff A et al (2014) A phase I trial of single-agent reolysin in patients with relapsed multiple myeloma. Clin Cancer Res 20:5946–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schambach A, Morgan M (2016) Retroviral vectors for cancer gene therapy. Recent results. Cancer Res 209:17–35

    CAS  Google Scholar 

  • Schirrmacher V, Griesbach A, Ahlert T (2001) Antitumor effects of Newcastle disease virus in vivo: local versus systemic effects. Int J Oncol 18:945–952

    CAS  PubMed  Google Scholar 

  • Shafren DR, Au GG, Nguyen T et al (2014) Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, Coxsackievirus A21. Clin Cancer Res 10:53–60

    Article  Google Scholar 

  • Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61

    Article  CAS  PubMed  Google Scholar 

  • Shi PY, Tilgner M, Lo MK (2002) Construction and characterization of subgenomic replicons of New York strain of West Nile virus. Virology 296:219–233

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Cattaneo R, Billeter MA (1999) A recombinant measles virus expressing hepatitis B surface antigen induces humoral responses in genetically modified mice. J Virol 73:4823–4828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Pal SK, Alex A et al (2015) Development of PROSTVAC immunotherapy in prostate cancer. Future Oncol 11:2137–2148

    Article  CAS  PubMed  Google Scholar 

  • Skelding KA, Barry RD, Shafren DR (2009) Systemic targeting of metastatic human breast xenografts by Coxsackievirus A21. Breast Cancer Res Treat 113:21–30

    Article  PubMed  Google Scholar 

  • Skelding KA, Barry RD, Shafren DR (2012) Enhanced oncolysis mediated by Coxsackievirus A21 1917 in combination with doxorubicin hydrochloride. Investig New Drugs 30:568–581

    Article  CAS  Google Scholar 

  • Solal-Celigny P, Lepage E, Borusse N et al (1993) Recombinant interferon alfa-2b combined with a regimen containing doxorubicin in patients with advanced follicular lymphoma. Groupe d’Etude des Lymphomes de l’Adulte. New Engl J Med 329:1608–1614

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Shi Q, Zhang H et al (2019) Advances in the techniques and methodologies of cancer therapy. Discov Med 27:45–55

    CAS  PubMed  Google Scholar 

  • Tani H, Morikawa S, Matsuura Y (2012) Development and applications of VSV vectors based on cell tropism. Front Microbiol 2:272

    Google Scholar 

  • Tatsis N, Ertl HCJ (2004) Adenoviruses as vaccine vectors. Mol Ther 10:616–629

    Article  CAS  PubMed  Google Scholar 

  • Thomas ED, Meza-Perez S, Bevis KS et al (2016) IL-12 expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice. J Ovarian Res 27:70

    Article  Google Scholar 

  • Thomas S, Kuncheria L, Roulstone V et al (2019) Development of a new fusion-enhanced oncolytic immunotherapy platform based on herpes simplex virus type 1. J Immunother Cancer 7:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Todryk S, McLean C, Ali S et al (1999) Disabled infectious single-cycle herpes simplex virus as an oncolytic vector for immunotherapy of colorectal cancer. Hum Gene Ther 10:2757–2768

    Article  CAS  PubMed  Google Scholar 

  • Toscano MG, van der Velden J, van der Werf S et al (2017) Generation of a vero-based packaging 1927 cell line to produce SV40 gene delivery vectors for use in clinical gene therapy studies. Mol Ther Methods Clin Dev 6:124–134

    Google Scholar 

  • Tosch C, Geist M, Ledoux C et al (2009) Adenovirus-mediated gene transfer of pathogen-associated molecular patterns for cancer immunotherapy. Cancer Gene Ther 16:310–319

    Article  CAS  PubMed  Google Scholar 

  • Vera Razquin N, Prieto J, Melero I et al (2005) Intratumoral injection of dendritic cells transduced by an SV40-based vector expressing interleukin-15 induces curative immunity mediated by CD8+ lymphocytes and NK cells. Mol Ther 12:950–959

    Article  PubMed  Google Scholar 

  • Vigil A, Park MS, Martinez O et al (2007) Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus. Cancer Res 67:8285–8292

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumar G, McCroskery S, Palese P (2020) Engineering Newcastle disease virus as an oncolytic vector for intratumoral delivery of immune checkpoint inhibitors and immunocytokines. J Virol 94:e01677–e01619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Wang Z, Tian H et al (2012) Biodistribution and safety assessment of bladder cancer specific oncolytic adenovirus in subcutaneous xenografts tumor model in nude mice. Curr Gene Ther 12:67–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Luo Y, Da T et al (2018) Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenovirus. JCI Insight 3:e99573

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Q, Fan J, Liao J et al (2017) Engineering the rapid adenovirus production and amplification (RAPA) cell line to expedite the generation of recombinant adenoviruses. Cell Physiol Biochem 41:2383–2398

    Article  CAS  PubMed  Google Scholar 

  • Wen XY, Mandelbaum S, Li ZH et al (2001) Tricistronic viral vectors co-expressing interleukin-12 (IL-12) and CD80 (B7-1) for immunotherapy of cancer preclinical studies in myeloma. Cancer Gene Ther 8:361–370

    Article  CAS  PubMed  Google Scholar 

  • Whilding LM, Archibald KM, Kulbe H et al (2013) Vaccinia virus induces programmed necrosis in ovarian cancer cells. Mol Ther 21:2074–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Więckiewicz J, Mytar B, Szatanek R et al (2011) Induction of monocyte antitumor response by human cancer cells transduced with TNF-GFP fusion gene: possible implications for immunotherapy of cancer. Folia Histochem Cytobiol 49:512–520

    Article  PubMed  Google Scholar 

  • Xiong C, Levis R, Shen P et al (1989) Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243:1188–1191

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Sun Q, Yu X et al (2017) Rescue of monlytic Newcastle Disease Virus (NDV) expressing IL-15 for cancer immunotherapy. Virus Res 233:35–41

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Yi C, Yang X et al (2019) Tumor cells modified with Newcastle disease virus expressing IL-24 as a cancer vaccine. Mol Ther Oncolytics 14:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka R, Tsuchiya N, Yajima N et al (2003) Induction of an antitumor immunological response by an intratumoral injection of dendritic cells pulsed with genetically engineered Semliki Forest virus to produce interleukin-18 combined with the systemic administration of interleukin-12. J Neurosurg 99:746–753

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Wang W, Zhu X et al (2015) Synergistic antitumor efficacy of combined DNA vaccines targeting tumor cells and angiogenesis. Biochem Biophys Res Comm 465:239–244

    Article  CAS  PubMed  Google Scholar 

  • Ylä-Pelto J, Tripathi L, Suis P (2016) Therapeutic use of native and recombinant enteroviruses. Viruses 3:57

    Article  Google Scholar 

  • Young JG, Green NK, Mautner V et al (2008) Combining gene and immunotherapy for prostate cancer. Prostate Cancer Prostatic Dis 11:187–193

    Article  CAS  PubMed  Google Scholar 

  • Yu YL, Wei CW, Chen YL et al (2010) Immunotherapy of breast cancer by single delivery with rAAV-mediated interleukin-15 expression. Int J Oncol 36:365–370

    CAS  PubMed  Google Scholar 

  • Zadeh G, Lang F, Daras M et al (2018) ATIM-14. Interim results of a phase II multicenter study of the conditionally replicative oncolytic adenovirus DNX-2401 with Pembrolizumab (Keytruda) for recurrent glioblastoma; Captive study (Keynote – 192). Neuro-Oncology 20:6

    Article  Google Scholar 

  • Zeh HJ, Bartlett DL (2002) Development of a replication-selective oncolytic poxvirus for the treatment of human cancers. Cancer Gene Ther 9:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu C, Zhang F et al (2016) MUC1 and survivin combination tumor gene vaccine generates specific immune responses and anti-tumor effects in a murine melanoma model. Vaccine 34:2648–2655

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu Y, Tan J et al (2021) Necroptotic virotherapy of oncolytic alphavirus M1 cooperated with Doxorubicin displays promising therapeutic efficacy in TNBC. Oncogene 40:4783–4795

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Chen P, Yang H et al (2013) Live attenuated measles virus vaccine induces apoptosis and promotes tumor regression in lung cancer. Oncol Rep 29:199–204

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Huang X, Yang Y (2007) Innate immune response to adenoviral vectors is mediated by both toll-like receptor-dependent and -independent pathways. J Virol 81:3170–3180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lundstrom, K. (2022). Applications of Viral Vectors for Cancer Immunotherapy. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_198-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_198-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics