Skip to main content

Iron-Induced Dopaminergic Cell Death In Vivo as a Model of Parkinson’s Disease

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder. The most striking neuropathological characteristic of PD is the relatively specific loss of neuromelanin (NM)-containing dopaminergic neurons of the substantia nigra (SN) pars compacta and the resulting pallor of the midbrain, as well as the development of abnormal a-synuclein-immunopositive inclusion bodies within the boundaries of the pigment. While the trigger for this relatively selective neuronal vulnerability remains unknown, the cascade of degenerative events leading to cell death is beginning to be understood. The major hypotheses believed to contribute to the eventual demise of nigral dopamine-producing cells include altered protein handling, disturbed iron homeostasis, oxidative stress, mitochondrial dysfunction, and neuroinflammation.

The objective of this review is to briefly analyze the evidence for an increased iron content in PD SN and NM as a potential source of increased iron. In addition, findings showing that intranigral iron injections induce dopaminergic nerve cell death in the rat that reproduces key features of PD and mimics molecular mechanisms underlying dopaminergic cell death in PD will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Arendash, G. W., Olanow, C. W., & Sengstock, G. J. (1993). Intranigral iron infusion in rats: A progressive model for excess nigral iron levels in Parkinson’s disease? In P. Riederer & M. B. H. Youdim (Eds.), Key topics in brain research. Iron in central nervous system disorders (pp. 87–101). Springer.

    Chapter  Google Scholar 

  • Ben-Shachar, D., Riederer, P., & Youdim, M. B. H. (1991). Iron-melanin interaction and lipid peroxidation: Implications for Parkinson’s disease. Journal of Neurochemistry, 57, 1609–1614.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar, D., & Youdim, M. B. H. (1991). Intranigral iron injection induces behavioural and biochemical Parkinsonism in rats. Journal of Neurochemistry, 57, 2133–2135.

    Article  CAS  PubMed  Google Scholar 

  • Berg, D., Godau, J., Riederer, P., Gerlach, M., & Arzberger, T. (2010). Microglia activation is related to substantia nigra echogenicity. Journal of Neural Transmission, 117, 1287–1292.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q. Q., Chen, Y. T., Zhang, Y., Wang, F. R., Yu, H. C., Zhang, Y. C., et al. (2019). Iron deposition in Parkinson’s disease by quantitative susceptibily mapping. BMC Neuroscience, 20, Art Nr 23. https://doi.org/10.1186/s12868-019-0505-9

    Article  Google Scholar 

  • Cheng, H.-C., Ulane, C. M., & Burke, R. E. (2010). Clinical progression in Parkinson disease and the neurobiology of axons. Annals of Neurology, 67, 715–725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Compagnoni, G. M., Di Fonzo, A., Corti, S., Comi, G. P., Bresolin, N., & Masliah, E. (2020). The role of mitochondria in neurodegenerative diseases: The lesson from Alzheimer’s disease and Parkinson’s disease. Molecular Neurobiology, 57, 2959–2980.

    Article  CAS  PubMed Central  Google Scholar 

  • Double, K. L., Halliday, G. M., Henderson, J., Griffiths, F. M., Heinemann, T., Riederer, P., et al. (2003). The dopamine receptor agonist lisuride attenuates iron-mediated dopaminergic neurodegeneration. Experimental Neurology, 184, 530–535.

    Article  CAS  PubMed  Google Scholar 

  • Double, K. L., Zecca, L., Ben-Shachar, D., Youdim, M. B. H., Riederer, P., & Gerlach, M. (2000). Neuromelanin may mediate neurotoxicity via its interaction with redox active iron. In A. Storch & M. A. Collins (Eds.), Neurotoxic factors in Parkinson’s disease and related disorders (pp. 211–218). Kluwer Academic/Plenum Publishers.

    Chapter  Google Scholar 

  • Duty, S., & Jenner, P. (2011). Animal models of Parkinson’s disease: A source of novel treatments and clues to the cause of the disease. British Journal of Pharmacology, 164, 1357–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fornai, F., Schlueter, O. M., Lenzi, P., Gesi, M., Ruffoli, R., Ferrucci, M., et al. (2005). Parkinson-like syndrome induced by continuous MPTP infusion: Convergent roles of the ubiquitin- proteasome system and alpha-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 102, 3413–3418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genoud, S., Jones, M. W. M., Trist, B. G., Deng, J., Chen, S., Hare, D. J., & Double, K. L. (2020). Simulanteous structural and elemental nanoimaging of human brain tissus. Chemical Science, 11, 8919. https://doi.org/10.1039/dOsc02844d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genoud, S., Senior, A. M., Hare, D. J., & Double, K. L. (2019). Meta-analysis of copper and iron in Parkinson’s disease brain and biofluids. Movement Disorders. https://doi.org/10.1002/mds.27947

  • Gerlach, M., Ben-Shachar, D., Riederer, P., & Youdim, M. B. H. (1994). Altered brain metabolism of iron as a cause of neurodegenerative diseases? Journal of Neurochemistry, 63, 793–807.

    Article  CAS  PubMed  Google Scholar 

  • Gerlach, M., Double, K., Götz, M. E., Youdim, M. B. H., & Riederer, P. (2006a). The role of iron in the pathogenesis of Parkinson’s disease. In A. Sigel, H. Sigel, & R. K. O. Sigel (Eds.), Neurodegenerative diseases and metal ions, Vol 1 of metal ions in life sciences (pp. 125–149). Wiley.

    Chapter  Google Scholar 

  • Gerlach, M., Double, K. L., Youdim, M. B. H., & Riederer, P. (2006b). Potential sources of increased iron in the substantia nigra of parkinsonian patients. Journal of Neural Transmission, 70, 133–142.

    CAS  Google Scholar 

  • Gerlach, M., & Riederer, P. (1996). Animal models of Parkinson’s disease: An empirical comparison with the phenomenology of the disease in man. Journal of Neural Transmission, 103, 987–1041.

    Article  CAS  PubMed  Google Scholar 

  • Gerlach, M., Riederer, P., & Double, K. L. (2008). Neuromelanin-bound ferric iron as an experimental model of dopaminergic neurodegeneration in Parkinson’s disease. Parkinsonism & Related Disorders, 14(Suppl 2), S185–S188.

    Article  Google Scholar 

  • Gerlach, M., Trautwein, A. X., Zecca, L., Youdim, M. B. H., & Riederer, P. (1995). Mössbauer spectroscopic studies of purified human neuromelanin isolated from the substantia nigra. Journal of Neurochemistry, 65, 923–926.

    Article  CAS  PubMed  Google Scholar 

  • Halliday, G., McRitchie, D., Cartwright, H., Pamphlett, R., Hely, M., & Morris, J. (1996). Midbrain neuropathology in idiopathic Parkinson’s disease and diffuse Lewy body disease. Journal of Clinical Neuroscience, 3, 52–60.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa, T., Matsuzaki, M., Takeda, A., Kikuchi, A., Akita, H., Perry, G., et al. (2004). Accelerated alpha-synuclein aggregation after differentiation of SH-SY5Y neuroblastoma cells. Brain Research, 1013, 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, E. C., Brandel, J. P., Galle, P., Javoy-Agid, F., & Agid, Y. (1991). Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: An X-ray microanalysis. Journal of Neurochemistry, 56, 446–451.

    Article  CAS  PubMed  Google Scholar 

  • Huddleston, D., Mahmoudi, B., Langely, J., Factor, S., Crosson, B., & Hu, X. P. (2019). MRI signiture of neuromelanin and iron pathology in Parkison’s disease. Neurology, 92(Suppl 5), S41.006.

    Google Scholar 

  • Jellinger, K. A. (2019). Neuropathology and pathogenesis of extrapyramidal movement disorders: A critical update. I. Hypokinetic-rigid movement disorders. Journal of Neural Transmission, 126, 933–995.

    Article  PubMed  Google Scholar 

  • Junxia, X., Hong, J., Wenfang, C., & Ming, Q. Z. (2003). Dopamine release rather than content in the caudate putamen is associated with behavioral changes in the iron rat model of Parkinson’s disease. Experimental Neurology, 182, 483–489.

    Article  CAS  PubMed  Google Scholar 

  • Kolasiewicz, W., Jaros, T., Heim, C., Melzacka, M., Sieklucka, M., Weiner, N., et al. (1995). Injection of minuscule dose of FeCl3 within the ventrolateral striatum causes a chronic disturbance of the integrative function within the limbic part of the ventral striatum. Journal of Neural Transmission. Parkinson’s Disease and Dementia Section, 9, 15–29.

    Article  CAS  PubMed  Google Scholar 

  • Lan, J., & Jiang, D. H. (1997). Excessive iron accumulation in the brain: A possible potential risk of neurodegeneration in Parkinson’s disease. Journal of Neural Transmission, 104, 649–660.

    Article  CAS  PubMed  Google Scholar 

  • Lopiano, L., Digilio, G., Fasano, M., Giraudo, S., Rizzone, M., Torre, E., & Bergamasco, B. (1999). Iron and neuromelanin in Parkinson’s disease. Journal of Neural Transmission, 106, XXIV.

    Google Scholar 

  • Michel, P. P., Vyas, S., & Agid, Y. (1992). Toxic effects of iron for cultured mesencephalic dopaminergic neurons derived from rat embryonic brains. Journal of Neurochemistry, 59, 118–127.

    Article  CAS  PubMed  Google Scholar 

  • Nunez, M. T., Gallardo, V., Munoz, P., Tapia, V., Esparza, A., Salazar, J., et al. (2004). Progressive iron accumulation induces a biphasic change in the glutathione content of neuroblastoma cells. Free Radical Biology & Medicine, 37, 953–960.

    Article  CAS  Google Scholar 

  • Pyatigorskaya, N., Sanz-Morere, C. B., Gaurav, R., Biondetti, E., Valabregue, R., Santin, M., et al. (2020). Iron imaging as a diagnositic tool for Parkinson’s disease: A systematic review and meta-analysis. Frontiers in Neurology, 11, Ari Nr. 366. https://doi.org/10.3389/fneur.2020.00366

    Article  Google Scholar 

  • Riederer, P., Berg, D., Casadei, N., Cheng, F., Classen, J., Dresel, C., et al. (2019). α-Synuclein in Parkinson’s disease: Causal or bystander? Journal of Neural Transmission, 126, 815–840.

    Article  PubMed  Google Scholar 

  • Riederer, P., & Wuketich, S. (1976). Time course of nigrostriatal degeneration in Parkinson’s disease. A detailed study of influential factors in human brain amine analysis. Journal of Neural Transmission, 38, 277–301.

    Article  CAS  PubMed  Google Scholar 

  • Salvador, G. A., & Oteiza, P. (2011). Iron overload triggers redox-sensitive signals in human IMR-32 neuroblastoma cells. Neurotoxicology, 32, 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Schapira, A. H., & Jenner, P. (2011). Etiology and pathogenesis of Parkinson’s disease. Movement Disorders, 26, 1049–1055.

    Article  PubMed  Google Scholar 

  • Sengstock, G. J., Olanow, C. W., Dunn, A. J., & Arendash, G. W. (1992). Iron induces degeneration of nigrostriatal neurons. Brain Research Bulletin, 28, 645–649.

    Article  CAS  PubMed  Google Scholar 

  • Sengstock, G. J., Olanow, C. W., Dunn, A. J., Barone, S., Jr., & Arendash, G. W. (1994). Progressive changes in striatal dopaminergic markers, nigral volume, and rotational behavior following iron infusion into the rat substantia nigra. Experimental Neurology, 130, 82–94.

    Article  CAS  PubMed  Google Scholar 

  • Sengstock, G. J., Olanow, C. W., Menzies, R. A., Dunn, A. J., & Arendash, G. W. (1993). Infusion of iron into the rat substantia nigra: Nigral pathology and dose-dependent loss of striatal dopaminergic markers. Journal of Neuroscience Research, 35, 67–82.

    Article  CAS  PubMed  Google Scholar 

  • Sengstock, G. J., Zawia, N. H., Olanow, C. W., Dunn, A. J., & Arendash, G. W. (1997). Intranigral iron infusion in the rat – Acute elevations in nigral lipid peroxidation and striatal dopaminergic markers with ensuing nigral degeneration. Biological Trace Element Research, 58, 177–195.

    Article  CAS  PubMed  Google Scholar 

  • Shima, T., Sarna, T., Swartz, H., Stroppolo, A., Gerbasi, R., & Zecca, L. (1997). Binding of iron to neuromelanin of human substantia nigra and synthetic melanin: An electron paramagnetic resonance spectroscopy study. Free Radical Biology & Medicine, 23, 110–111.

    Article  CAS  Google Scholar 

  • Shoham, S., & Youdim, M. B. H. (2000). Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases. Cellular and Molecular Biology, 46, 743–760.

    CAS  PubMed  Google Scholar 

  • Sian-Hulsmann, J., & Peter Riederer, P. (2020) The role of alpha-synuclein as ferrireductase in neurodegeneration associated with Parkinson’s disease. Journal of Neural Transmission, 127(5), 749–754.

    Google Scholar 

  • Sian-Hulsmann, J., Mandel, S., Youdim, M. B. H., & Riederer, P. (2011). The relevance of iron in the pathogenesis of Parkinson’s disease. Journal of Neurochemistry, 118, 939–957.

    Article  PubMed  CAS  Google Scholar 

  • Sian-Hulsmann, J., Monoranu, C., Strobel, S., & Riederer, P. (2015). Lewy bodies: A spectator or salient killer? CNS & Neurological Disorders Drug Targets, 14, 947–955.

    Article  CAS  Google Scholar 

  • Sofic, E., Riederer, P., Heinsen, H., Beckmann, H., Reynolds, G. P., Hebenstreit, G., et al. (1988). Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. Journal of Neural Transmission, 74, 199–205.

    Article  CAS  PubMed  Google Scholar 

  • Trist, B. G., Hare, D. J., & Double, K. L. (2019). Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell, 18, e13031. https://doi.org/10.1111/acel.13031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky, V. N., Li, J., & Fink, A. L. (2001). Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein. A possible molecular link between Parkinson’s disease and heavy metal exposure. The Journal of Biological Chemistry, 276, 44284–44296.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J. Y., Zhuang, Q. Q., Zhu, L. B., Zhu, H., Li, T., Li, R., et al. (2016). Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Scientific Reports, 6, Art Nr 36669. https://doi.org/10.1038/srep36669

    Article  CAS  Google Scholar 

  • Wesemann, W., Blaschke, S., Solbach, M., Grote, C., Clement, H. W., & Riederer, P. (1994). Intranigral injected iron progressively reduces striatal dopamine metabolism. Journal of Neural Transmission – Parkinson’s Disease and Dementia Section, 8, 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Wesemann, W., Blaschke, S., Clement, H. W., Grote, C., Weiner, N., Kolasiewicz, W., et al. (1993). Iron and neurotoxin intoxication: Comparative in vitro and in vivo studies. In P. Riederer & M. B. H. Youdim (Eds.), Key topics in brain research. Iron in central nervous system disorders (pp. 79–86). Springer.

    Chapter  Google Scholar 

  • Wilms, H., Rosenstiel, P., Sievers, J., Deuschl, G., Zecca, L., & Lucius, R. (2003). Activation of microglia by human neuromelanin is NF-kappa B-dependent and involves p38 mitogen-activated protein kinase: Implications for Parkinson’s disease. The FASEB Journal, 17, 500–502.

    Article  CAS  PubMed  Google Scholar 

  • Zecca, L., Stroppolo, A., Gatti, A., Tampellini, D., Toscani, M., Gallorini, M., et al. (2004). The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proceedings of the National Academy of Sciences of the United States of America, 101, 9843–9848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zecca, L., Wilms, H., Geick, S., Claasen, J. H., Brandenburg, L. O., Holzknecht, C., et al. (2008). Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: Implications for Parkinson’s disease. Acta Neuropathologica, 116, 47–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Gerlach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gerlach, M., Double, K.L., Riederer, P. (2021). Iron-Induced Dopaminergic Cell Death In Vivo as a Model of Parkinson’s Disease. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_100-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_100-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics