Skip to main content

Demand-Driven Automatic Control of Irrigation Channels

  • Reference work entry
  • First Online:
Encyclopedia of Systems and Control

Abstract

Large-scale networks of reservoirs and open channels are widely used in agricultural settings for distributing water to irrigators. A demand-driven approach to the automatic control of irrigation channels is described in this entry. The approach involves online measurement of water levels along the channel and distributed feedback control of flow regulation structures to manage the capacity to supply water off-takes under the power of gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. 2030 Water Resources Group (2009) Charting our water future. Online: https://www.2030wrg.org/charting-our-water-future/

    Google Scholar 

  2. Aström KJ, Murray R (2010) Feedback systems: an introduction for scientists and engineers. Princeton University Press, New Jersey

    Book  MATH  Google Scholar 

  3. Aughton D, Mareels I, Weyer E (2002a) WIPO Publication Number WO2002016698: CONTROL GATES. US Pat. 7,083,359 issued 1 Aug 2006

    Google Scholar 

  4. Aughton D, Mareels I, Weyer E (2002b) WIPO Publication Number WO2002071163: FLUID REGULATION. US Pat. 7,152,001 issued 19 Dec 2006

    Google Scholar 

  5. Bos M (1989) Discharge measurement structures, publication 20 International Institute for Land Reclamation and Improvement/ILRI, Wageningen, The Netherlands

    Google Scholar 

  6. Cantoni M, Weyer E, Li Y, Ooi SK, Mareels I, Ryan M (2007) Control of large-scale irrigation networks. Proc IEEE 95(1):75–91

    Article  Google Scholar 

  7. Cantoni M, Farokhi F, Kerrigan E, Shames I (2017) Structured computation of optimal controls for constrained cascade systems. Int J Control. https://doi.org/10.1080/00207179.2017.1366668

    MATH  Google Scholar 

  8. Cardno Report no. 3606-64 (2017) Audit of Irrigation Modernization Water Recovery 2016/17 Irrigation Season. Online: https://www.water.vic.gov.au/__data/ assets/pdf_file/0022/112954/Audit-of-Irrigation-Mode- rnisation-Water-Recovery-2017-v.2.0-FINAL.pdf

  9. Chaudhry M (2007) Open-channel flow. Springer Science & Business Media, New York

    MATH  Google Scholar 

  10. Choy S, Cantoni M, Dower P, Kearney M (2013) WIPO Publication Number WO2013149304: SUPERVISORY CONTROL OF AUTOMATED IRRIGATION CHANNELS. US Pat. 9,952,601 issued 24 Apr 2018

    Google Scholar 

  11. Davis R, Hirji R (2003) Irrigation and drainage development. Water Resources and Environment Technical Report E 1. The Worldbank, Washington, DC. Online: http://documents.worldbank.org/curated/en/2003/03/9291611/

  12. Doyle JC, Francis BA, Tannenbaum AR (1992) Feedback control theory. Macmillan, New York

    Google Scholar 

  13. Fele F, Maestre JM, Hashemy SM, de la Pena DM, Camacho EF (2014) Coalitional model predictive control of an irrigation canal. J Process Control 24(4): 314–325

    Article  Google Scholar 

  14. de Halleux J, Prieur C, Coron JM, D’Andrea-Novel B, Bastin G (2003) Boundary feedback control in networks of open channels. Automatica 39(8): 1365–1376

    Article  MathSciNet  MATH  Google Scholar 

  15. Hawke G (2016) Irrigation in Australia: unprecedented investment, innovation and insight – keynote address. In: 2016 irrigation Australia international conference and exhibition, Melbourne. Online: https://www.irrigationaustralia.com.au/documents/item/320

  16. Lamaddalena N, Lebdi F, Todorovic M, Bogliotti C (eds) (2004) Proceedings of the 2nd WASAMED (WAter SAving in MEDiterranean agriculture) Workshop (Irrigation Systems Performance). International Centre for Advanced Mediterranean Agronomic Studies. Online: https://www.um.edu.mt/__data/assets/pdf_file/0014/102614/WASAMED_options52.pdf

    Google Scholar 

  17. Li Y, Cantoni M, Weyer E (2005) On water-level error propagation in controlled irrigation channels. In: Proceedings of the 44th IEEE conference on decision and control, pp 2101–2106

    Google Scholar 

  18. Li Y, Cantoni M (2007) On distributed anti-windup compensation for distributed linear control systems. In: Proceedings of the 46th IEEE conference on decision and control, pp 1106–1111

    Google Scholar 

  19. Litrico X, Fromion V (2009) Modeling and control of hydrosystems. Springer Science & Business Media, London

    Book  MATH  Google Scholar 

  20. Litrico X, Fromion V, Baume J-P, Arranja C, Rijo M (2005) Experimental validation of a methodology to control irrigation canals based on Saint Venant equations. Control Eng Pract 13(11):1425–1437

    Article  Google Scholar 

  21. Malaterre PO (1995) Regulation of irrigation canals. Irrig Drain Syst 9(4):297–327

    Article  Google Scholar 

  22. Marinaki M, Papageorgiou M (2005) Optimal real-time control of sewer networks. Springer Science & Business Media, London/New York

    MATH  Google Scholar 

  23. Mareels I, Weyer E, Ooi SK, Cantoni M, Li Y, Nair G (2005) Systems engineering for irrigation systems: successes and challenges. Annu Rev Control (IFAC) 29(2):169–278

    Article  Google Scholar 

  24. Marsden Jacob Associates (2003) Improving water-use efficiency in irrigation conveyance systems A study of investment strategies. Land & Water Australia. ISBN 0642 760 993 – print. Online: http://lwa.gov.au/products/pr030566, http://www.insidecotton.com/jspui/bitstream/1/1756/2/pr030516.pdf

  25. Mays LW (ed) (2010) Ancient water technologies. Springer Science & Business Media, Dordrecht

    Google Scholar 

  26. Nasir HA, Cantoni M, Li Y, Weyer E (2019) Stochastic model predictive control based reference planning for automated open-water channels. IEEE Trans Control Syst Technol. https://doi.org/10.1109/TCST.2019.2952788

    Book  Google Scholar 

  27. Negenborn RR, van Overloop PJ, Keviczky T, De Schutter B (2009) Distributed model predictive control of irrigation canals. NHM 4(2):359–380

    Article  MathSciNet  MATH  Google Scholar 

  28. Northern Victorian Irrigation Renewal Project (2009). Online: https://www.parliament.vic.gov.au/images/ stories/documents/council/SCFPA/water/Transcripts/ NVIRP_Presentation.pdf

  29. Ooi SK, Krutzen MPM, Weyer E (2005) On physical and data driven modeling of irrigation channels. Control Eng Pract 13(4):461–471

    Article  Google Scholar 

  30. Ortloff CR (2009) Water engineering in the ancient world: archaeological and climate perspectives on societies of ancient South America, the middle east, and south-east Asia. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  31. van Overloop PJ (2006) Model predictive control on open water systems. Ph.D. Thesis, Delft University of Technology, Delft

    Google Scholar 

  32. Playan E, Mateos L (2004) Modernization and optimization of irrigation systems to increase water productivity. In: Proceedings of the 4th international crop science congress. Online: http://www.cropscience.org.au/icsc2004/pdf/143_playane.pdf

  33. Puram RK, Sewa Bhawan S (2014) Guidelines for improving water use efficiency in irrigation, domestic & industrial sectors. Ministry of Water Resources, Government of India. Online: http://mowr.gov.in/ sites/default/files/Guidelines_for_improving_water_use_ eflciency_1.pdf

  34. Schultz B, Thatte CD, Labhsetwar VK (2005) Irrigation and drainage: main contributors to global food production. Irrig Drain 54(3):263–278

    Article  Google Scholar 

  35. Schuurmans J, Bosgra OH, Brouwer R (1995) Open-channel flow model approximation for controller design. Appl Math Model 91:525–530

    Article  MATH  Google Scholar 

  36. Schuurmans J, Hof A, Dijkstra S, Bosgra OH, Brouwer R (1999a) Simple water level controller for irrigation and drainage canals. J Irrig Drain Eng 125(4):189–195

    Article  Google Scholar 

  37. Schuurmans J, Clemmens AJ, Dijkstra S, Hof A, Brouwer R (1999b) Modeling of irrigation and drainage canals for controller design. J Irrig Drain Eng 125(6):338–344

    Article  Google Scholar 

  38. Seiler P, Pant A, Hedrick K (2004) Disturbance propagation in vehicle strings. IEEE Trans Autom Control 49(10):1835–1841

    Article  MathSciNet  MATH  Google Scholar 

  39. Soltanian L, Cantoni M (2015) Decentralized string-stability analysis for heterogeneous cascades subject to load-matching requirements. Multidim Syst Signal Process 26(4):985–999

    Article  MathSciNet  MATH  Google Scholar 

  40. UNESCO (2019) The United Nations World Water Development Report 2019: Leaving no one behind – Executive Summary. Technical report, UNESCO. Online: https://unesdoc.unesco.org/ark:/48223/pf0000367303

  41. Weyer E (2002) Decentralised PI control of an open water channel. In: Proceedings of the 15th IFAC world congress

    Google Scholar 

  42. Weyer E (2001) System identification of an open water channel. Control Eng Pract 9:1289–1299

    Article  Google Scholar 

  43. Zaccarian L, Li Y, Weyer E, Cantoni M, Teel AR (2007) Anti-windup for marginally stable plants and its application to open water channel control systems. Control Eng Pract 15(2):261–272

    Article  Google Scholar 

  44. Zafar A, Cantoni M, Farokhi F (2019) Optimal control computation for cascade systems by structured Jacobi iterations. IFAC-PapersOnLine 52(20):291–296

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Cantoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cantoni, M., Mareels, I. (2021). Demand-Driven Automatic Control of Irrigation Channels. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-44184-5_100100

Download citation

Publish with us

Policies and ethics