Skip to main content

Magnetic Resonance Imaging of the Hip

  • Reference work entry
  • First Online:
Hip Arthroscopy and Hip Joint Preservation Surgery

Abstract

Incorporation of hip magnetic resonance imaging (MRI) into clinical practice can confirm suspected pathology, separate differential diagnoses, and direct treatment plans when dealing with complex pathology involving the hip joint and surrounding structures. The purpose of this chapter is to present the basic science of MRI related to the hip, review the normal imaging characteristics of hip structures, and detail imaging of typical hip pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blaichman JI, Chan BY, Michelin P, Lee KS. US-guided musculoskeletal interventions in the hip with MRI and US correlation. Radiographics. 2020;40(1):181–99.

    Article  PubMed  Google Scholar 

  2. Lewis PB, Weber AE, Nho SJ. Imaging for nonarthritic hip pathology. Am J Orthop (Belle Mead NJ). 2017;46(1):17–22.

    Google Scholar 

  3. Palmer WE, Bencardino JT. Topics in magnetic resonance imaging: sports medicine. Top Magn Reson Imaging. 2003;14(2):113.

    Article  PubMed  Google Scholar 

  4. Lewis PB, Weber AE, Kuhns BD, Nho SJ. A systematic approach to magnetic resonance imaging interpretation of sports medicine injuries of the hip. JBJS Rev. 2018;6(11):e6.

    Article  PubMed  Google Scholar 

  5. Plewes DB, Kucharczyk W. Physics of MRI: a primer. J Magn Reson Imaging. 2012;35(5):1038–54.

    Article  PubMed  Google Scholar 

  6. Berger A. Magnetic resonance imaging. BMJ. 2002;324(7328):35.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Byrd JW, Jones KS. Diagnostic accuracy of clinical assessment, magnetic resonance imaging, magnetic resonance arthrography, and intra-articular injection in hip arthroscopy patients. Am J Sports Med. 2004;32(7):1668–74.

    Article  PubMed  Google Scholar 

  8. Sundberg TP, Toomayan GA, Major NM. Evaluation of the acetabular labrum at 3.0-T MR imaging compared with 1.5-T MR arthrography: preliminary experience. Radiology. 2006;238(2):706–11.

    Article  PubMed  Google Scholar 

  9. Robinson P. Conventional 3-T MRI and 1.5-T MR arthrography of femoroacetabular impingement. AJR Am J Roentgenol. 2012;199(3):509–15.

    Article  PubMed  Google Scholar 

  10. Chang CY, Gill CM, Huang AJ, Simeone FJ, Torriani M, McCarthy JC, et al. Use of MR arthrography in detecting tears of the ligamentum teres with arthroscopic correlation. Skelet Radiol. 2015;44(3):361–7.

    Article  Google Scholar 

  11. Maroudas A, Muir H, Wingham J. The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochim Biophys Acta. 1969;177(3):492–500.

    Article  CAS  PubMed  Google Scholar 

  12. Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology. 1997;205(2):551–8.

    Article  CAS  PubMed  Google Scholar 

  13. Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med. 1999;41(5):857–65.

    Article  CAS  PubMed  Google Scholar 

  14. Trattnig S, Mlynarik V, Breitenseher M, Huber M, Zembsch A, Rand T, et al. MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Imaging. 1999;17(4):577–83.

    Article  CAS  PubMed  Google Scholar 

  15. Bonassar LJ, Frank EH, Murray JC, Paguio CG, Moore VL, Lark MW, et al. Changes in cartilage composition and physical properties due to stromelysin degradation. Arthritis Rheum. 1995;38(2):173–83.

    Article  CAS  PubMed  Google Scholar 

  16. Gray ML, Burstein D, Kim YJ, Maroudas A. Elizabeth Winston Lanier award winner. Magnetic resonance imaging of cartilage glycosaminoglycan: basic principles, imaging technique, and clinical applications. J Orthop Res. 2008;26(3):281–91.

    Article  CAS  PubMed  Google Scholar 

  17. de Mello R, Ma Y, Ji Y, Du J, Chang EY. Quantitative MRI Musculoskeletal Techniques: An Update. AJR Am J Roentgenol. 2019;213(3):524–33.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Burstein D, Gray M. New MRI techniques for imaging cartilage. J Bone Joint Surg Am. 2003;85-A(Suppl 2):70–7.

    Article  Google Scholar 

  19. Bittersohl B, Zilkens C, Kim YJ, Werlen S, Siebenrock KA, Mamisch TC, et al. Delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: pearls and pitfalls. Orthop Rev (Pavia). 2011;3(2):e11.

    Article  Google Scholar 

  20. Schmaranzer F, Arendt L, Liechti EF, Nuss K, von Rechenberg B, Kircher PR, et al. Do dGEMRIC and T2 imaging correlate with histologic cartilage degeneration in an experimental ovine FAI model? Clin Orthop Relat Res. 2019;477(5):990–1003.

    Article  PubMed  Google Scholar 

  21. Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater. 2007;13:76–86.

    Article  CAS  PubMed  Google Scholar 

  22. Maroudas A, Venn M. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling. Ann Rheum Dis. 1977;36(5):399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical Composition. Ann Rheum Dis. 1977;36(2):121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Konig H, Sauter R, Deimling M, Vogt M. Cartilage disorders: comparison of spin-echo, CHESS, and FLASH sequence MR images. Radiology. 1987;164(3):753–8.

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe A, Boesch C, Siebenrock K, Obata T, Anderson SE. T2 mapping of hip articular cartilage in healthy volunteers at 3T: a study of topographic variation. J Magn Reson Imaging. 2007;26(1):165–71.

    Article  PubMed  Google Scholar 

  26. Lehner KB, Rechl HP, Gmeinwieser JK, Heuck AF, Lukas HP, Kohl HP. Structure, function, and degeneration of bovine hyaline cartilage: assessment with MR imaging in vitro. Radiology. 1989;170(2):495–9.

    Article  CAS  PubMed  Google Scholar 

  27. Broderick LS, Turner DA, Renfrew DL, Schnitzer TJ, Huff JP, Harris C. Severity of articular cartilage abnormality in patients with osteoarthritis: evaluation with fast spin-echo MR vs arthroscopy. AJR Am J Roentgenol. 1994;162(1):99–103.

    Article  CAS  PubMed  Google Scholar 

  28. Jazrawi LM, Alaia MJ, Chang G, Fitzgerald EF, Recht MP. Advances in magnetic resonance imaging of articular cartilage. J Am Acad Orthop Surg. 2011;19(7):420–9.

    Article  PubMed  Google Scholar 

  29. Wang YX, Zhang Q, Li X, Chen W, Ahuja A, Yuan J. T1rho magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging. Quant Imaging Med Surg. 2015;5(6):858–85.

    PubMed  PubMed Central  Google Scholar 

  30. Casula V, Nissi MJ, Podlipska J, Haapea M, Koski JM, Saarakkala S, et al. Elevated adiabatic T1rho and T2rho in articular cartilage are associated with cartilage and bone lesions in early osteoarthritis: a preliminary study. J Magn Reson Imaging. 2017;46(3):678–89.

    Article  PubMed  Google Scholar 

  31. Hanninen N, Rautiainen J, Rieppo L, Saarakkala S, Nissi MJ. Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue. Sci Rep. 2017;7(1):9606.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wheaton AJ, Casey FL, Gougoutas AJ, Dodge GR, Borthakur A, Lonner JH, et al. Correlation of T1rho with fixed charge density in cartilage. J Magn Reson Imaging. 2004;20(3):519–25.

    Article  PubMed  Google Scholar 

  33. Majumdar S, Li X, Blumenkrantz G, Saldanha K, Ma CB, Kim H, et al. MR imaging and early cartilage degeneration and strategies for monitoring regeneration. J Musculoskelet Neuronal Interact. 2006;6(4):382–4.

    CAS  PubMed  Google Scholar 

  34. Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging. 2006;23(4):547–53.

    Article  PubMed  Google Scholar 

  35. Johnson RJ. Beware the consequences of your imaging. Curr Sports Med Rep. 2012;11(6):323–7.

    Article  PubMed  Google Scholar 

  36. Frank JM, Harris JD, Erickson BJ, Slikker W 3rd, Bush-Joseph CA, Salata MJ, et al. Prevalence of Femoroacetabular impingement imaging findings in asymptomatic volunteers: a systematic review. Arthroscopy. 2015;31(6):1199–204.

    Article  PubMed  Google Scholar 

  37. Beaule PE, O’Neill M, Rakhra K. Acetabular labral tears. J Bone Joint Surg Am. 2009;91(3):701–10.

    Article  PubMed  Google Scholar 

  38. Naraghi A, White LM. MRI of labral and chondral lesions of the hip. AJR Am J Roentgenol. 2015;205(3):479–90.

    Article  PubMed  Google Scholar 

  39. Rakhra KS. Magnetic resonance imaging of acetabular labral tears. J Bone Joint Surg Am. 2011;93(Suppl 2):28–34.

    Article  PubMed  Google Scholar 

  40. Smith TO, Hilton G, Toms AP, Donell ST, Hing CB. The diagnostic accuracy of acetabular labral tears using magnetic resonance imaging and magnetic resonance arthrography: a meta-analysis. Eur Radiol. 2011;21(4):863–74.

    Article  PubMed  Google Scholar 

  41. Zlatkin MB, Pevsner D, Sanders TG, Hancock CR, Ceballos CE, Herrera MF. Acetabular labral tears and cartilage lesions of the hip: indirect MR arthrographic correlation with arthroscopy–a preliminary study. AJR Am J Roentgenol. 2010;194(3):709–14.

    Article  PubMed  Google Scholar 

  42. Yoon LS, Palmer WE, Kassarjian A. Evaluation of radial-sequence imaging in detecting acetabular labral tears at hip MR arthrography. Skelet Radiol. 2007;36(11):1029–33.

    Article  Google Scholar 

  43. Aydingoz U, Ozturk MH. MR imaging of the acetabular labrum: a comparative study of both hips in 180 asymptomatic volunteers. Eur Radiol. 2001;11(4):567–74.

    Article  CAS  PubMed  Google Scholar 

  44. Blankenbaker DG, De Smet AA, Keene JS, Fine JP. Classification and localization of acetabular labral tears. Skelet Radiol. 2007;36(5):391–7.

    Article  CAS  Google Scholar 

  45. Domb BG, Shindle MK, McArthur B, Voos JE, Magennis EM, Kelly BT. Iliopsoas impingement: a newly identified cause of labral pathology in the hip. HSS J. 2011;7(2):145–50.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nguyen MS, Kheyfits V, Giordano BD, Dieudonne G, Monu JU. Hip anatomic variants that may mimic abnormalities at MRI: labral variants. AJR Am J Roentgenol. 2013;201(3):W394–400.

    Article  PubMed  Google Scholar 

  47. Saddik D, Troupis J, Tirman P, O’Donnell J, Howells R. Prevalence and location of acetabular sublabral sulci at hip arthroscopy with retrospective MRI review. AJR Am J Roentgenol. 2006;187(5):W507–11.

    Article  PubMed  Google Scholar 

  48. Chopra A, Grainger AJ, Dube B, Evans R, Hodgson R, Conroy J, et al. Comparative reliability and diagnostic performance of conventional 3T magnetic resonance imaging and 1.5T magnetic resonance arthrography for the evaluation of internal derangement of the hip. Eur Radiol. 2018;28(3):963–71.

    Article  CAS  PubMed  Google Scholar 

  49. McCarthy JC, Lee JA. Arthroscopic intervention in early hip disease. Clin Orthop Relat Res. 2004;429:157–62.

    Article  Google Scholar 

  50. Schmid MR, Notzli HP, Zanetti M, Wyss TF, Hodler J. Cartilage lesions in the hip: diagnostic effectiveness of MR arthrography. Radiology. 2003;226(2):382–6.

    Article  PubMed  Google Scholar 

  51. McCarthy JC, Noble PC, Schuck MR, Wright J, Lee J. The Otto E. Aufranc award: the role of labral lesions to development of early degenerative hip disease. Clin Orthop Relat Res. 2001;393:25–37.

    Article  Google Scholar 

  52. Dallich AA, Rath E, Atzmon R, Radparvar JR, Fontana A, Sharfman Z, et al. Chondral lesions in the hip: a review of relevant anatomy, imaging and treatment modalities. J Hip Preserv Surg. 2019;6(1):3–15.

    Article  PubMed  PubMed Central  Google Scholar 

  53. White CL, Chauvin NA, Waryasz GR, March BT, Francavilla ML. MRI of native knee cartilage delamination injuries. AJR Am J Roentgenol. 2017;209(5):W317–W21.

    Article  PubMed  Google Scholar 

  54. Beaule PE, Zaragoza E, Copelan N. Magnetic resonance imaging with gadolinium arthrography to assess acetabular cartilage delamination. A report of four cases. J Bone Joint Surg Am. 2004;86(10):2294–8.

    Article  PubMed  Google Scholar 

  55. Dietrich TJ, Suter A, Pfirrmann CW, Dora C, Fucentese SF, Zanetti M. Supraacetabular fossa (pseudodefect of acetabular cartilage): frequency at MR arthrography and comparison of findings at MR arthrography and arthroscopy. Radiology. 2012;263(2):484–91.

    Article  PubMed  Google Scholar 

  56. O’Donnell JM, Devitt BM, Arora M. The role of the ligamentum teres in the adult hip: redundant or relevant?A review. J Hip Preserv Surg. 2018;5(1):15–22.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Annabell L, Master V, Rhodes A, Moreira B, Coetzee C, Tran P. Hip pathology: the diagnostic accuracy of magnetic resonance imaging. J Orthop Surg Res. 2018;13(1):127.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shakoor D, Farahani SJ, Hafezi-Nejad N, Johnson A, Vaidya D, Khanuja HS, et al. Lesions of ligamentum Teres: diagnostic performance of MRI and MR arthrography-a systematic review and meta-analysis. AJR Am J Roentgenol. 2018;211(1):W52–63.

    Article  PubMed  Google Scholar 

  59. Garabekyan T, Chadayammuri V, Pascual-Garrido C, Mei-Dan O. All-arthroscopic ligamentum Teres reconstruction with graft fixation at the femoral head-neck junction. Arthrosc Tech. 2016;5(1):e143–7.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Menge TJ, Mitchell JJ, Briggs KK, Philippon MJ. Anatomic arthroscopic ligamentum Teres reconstruction for hip instability. Arthrosc Tech. 2016;5(4):e737–e42.

    Article  PubMed  PubMed Central  Google Scholar 

  61. O’Donnell J, Klaber I, Takla A. Ligamentum teres reconstruction: indications, technique and minimum 1-year results in nine patients. J Hip Preserv Surg. 2020;7(1):140–6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cerezal L, Kassarjian A, Canga A, Dobado MC, Montero JA, Llopis E, et al. Anatomy, biomechanics, imaging, and management of ligamentum teres injuries. Radiographics. 2010;30(6):1637–51.

    Article  PubMed  Google Scholar 

  63. Bardakos NV, Villar RN. The ligamentum teres of the adult hip. J Bone Joint Surg Br. 2009;91(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  64. Datir A, Xing M, Kang J, Harkey P, Kakarala A, Carpenter WA, et al. Diagnostic utility of MRI and MR arthrography for detection of ligamentum teres tears: a retrospective analysis of 187 patients with hip pain. AJR Am J Roentgenol. 2014;203(2):418–23.

    Article  PubMed  Google Scholar 

  65. Blankenbaker DG, De Smet AA, Keene JS, Del Rio AM. Imaging appearance of the normal and partially torn ligamentum teres on hip MR arthrography. AJR Am J Roentgenol. 2012;199(5):1093–8.

    Article  PubMed  Google Scholar 

  66. Ng KCG, Jeffers JRT, Beaule PE. Hip joint capsular anatomy, mechanics, and surgical management. J Bone Joint Surg Am. 2019;101(23):2141–51.

    Article  PubMed  Google Scholar 

  67. Nho SJ, Beck EC, Kunze KN, Okoroha K, Suppauksorn S. Contemporary management of the hip capsule during arthroscopic hip preservation surgery. Curr Rev Musculoskelet Med. 2019;12:260–70.

    Article  PubMed Central  Google Scholar 

  68. Magerkurth O, Jacobson JA, Morag Y, Caoili E, Fessell D, Sekiya JK. Capsular laxity of the hip: findings at magnetic resonance arthrography. Arthroscopy. 2013;29(10):1615–22.

    Article  PubMed  Google Scholar 

  69. Kay J, Memon M, Rubin S, Simunovic N, Nho SJ, Belzile EL, et al. The dimensions of the hip capsule can be measured using magnetic resonance imaging and may have a role in arthroscopic planning. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):1246–61.

    Article  PubMed  Google Scholar 

  70. Kingzett-Taylor A, Tirman PF, Feller J, McGann W, Prieto V, Wischer T, et al. Tendinosis and tears of gluteus medius and minimus muscles as a cause of hip pain: MR imaging findings. AJR Am J Roentgenol. 1999;173(4):1123–6.

    Article  CAS  PubMed  Google Scholar 

  71. Lachiewicz PF. Abductor tendon tears of the hip: evaluation and management. J Am Acad Orthop Surg. 2011;19(7):385–91.

    Article  PubMed  Google Scholar 

  72. Cvitanic O, Henzie G, Skezas N, Lyons J, Minter J. MRI diagnosis of tears of the hip abductor tendons (gluteus medius and gluteus minimus). AJR Am J Roentgenol. 2004;182(1):137–43.

    Article  PubMed  Google Scholar 

  73. Bunker TD, Esler CN, Leach WJ. Rotator-cuff tear of the hip. J Bone Joint Surg Br. 1997;79(4):618–20.

    Article  CAS  PubMed  Google Scholar 

  74. Chi AS, Long SS, Zoga AC, Read PJ, Deely DM, Parker L, et al. Prevalence and pattern of gluteus medius and minimus tendon pathology and muscle atrophy in older individuals using MRI. Skelet Radiol. 2015;44(12):1727–33.

    Article  Google Scholar 

  75. Chung CB, Robertson JE, Cho GJ, Vaughan LM, Copp SN, Resnick D. Gluteus medius tendon tears and avulsive injuries in elderly women: imaging findings in six patients. AJR Am J Roentgenol. 1999;173(2):351–3.

    Article  CAS  PubMed  Google Scholar 

  76. Redmond JM, Chen AW, Domb BG. Greater trochanteric pain syndrome. J Am Acad Orthop Surg. 2016;24(4):231–40.

    Article  PubMed  Google Scholar 

  77. Blankenbaker DG, Ullrick SR, Davis KW, De Smet AA, Haaland B, Fine JP. Correlation of MRI findings with clinical findings of trochanteric pain syndrome. Skelet Radiol. 2008;37(10):903–9.

    Article  Google Scholar 

  78. Johnson KA. Impingement of the lesser trochanter on the ischial ramus after total hip arthroplasty. Report of three cases. J Bone Joint Surg Am. 1977;59(2):268–9.

    Article  CAS  PubMed  Google Scholar 

  79. O’Brien SD, Bui-Mansfield LT. MRI of quadratus femoris muscle tear: another cause of hip pain. AJR Am J Roentgenol. 2007;189(5):1185–9.

    Article  PubMed  Google Scholar 

  80. Torriani M, Souto SC, Thomas BJ, Ouellette H, Bredella MA. Ischiofemoral impingement syndrome: an entity with hip pain and abnormalities of the quadratus femoris muscle. AJR Am J Roentgenol. 2009;193(1):186–90.

    Article  PubMed  Google Scholar 

  81. Tosun O, Algin O, Yalcin N, Cay N, Ocakoglu G, Karaoglanoglu M. Ischiofemoral impingement: evaluation with new MRI parameters and assessment of their reliability. Skelet Radiol. 2012;41(5):575–87.

    Article  Google Scholar 

  82. Patti JW, Ouellette H, Bredella MA, Torriani M. Impingement of lesser trochanter on ischium as a potential cause for hip pain. Skelet Radiol. 2008;37(10):939–41.

    Article  Google Scholar 

  83. De Smet AA, Blankenbaker DG, Alsheik NH, Lindstrom MJ. MRI appearance of the proximal hamstring tendons in patients with and without symptomatic proximal hamstring tendinopathy. AJR Am J Roentgenol. 2012;198(2):418–22.

    Article  PubMed  Google Scholar 

  84. Rubin DA. Imaging diagnosis and prognostication of hamstring injuries. AJR Am J Roentgenol. 2012;199(3):525–33.

    Article  PubMed  Google Scholar 

  85. Sugano N, Takaoka K, Ohzono K, Matsui M, Masuhara K, Ono K. Prognostication of nontraumatic avascular necrosis of the femoral head. Significance of location and size of the necrotic lesion. Clin Orthop Relat Res. 1994;303:155–64.

    Article  Google Scholar 

  86. Theodorou DJ, Theodorou SJ, Haghighi P, Resnick D. Distinct focal lesions of the femoral head: imaging features suggesting an atypical and minimal form of bone necrosis. Skelet Radiol. 2002;31(8):435–44.

    Article  Google Scholar 

  87. Hammoud S, Bedi A, Magennis E, Meyers WC, Kelly BT. High incidence of athletic pubalgia symptoms in professional athletes with symptomatic femoroacetabular impingement. Arthroscopy. 2012;28(10):1388–95.

    Article  PubMed  Google Scholar 

  88. Nouh MR, Schweitzer ME, Rybak L, Cohen J. Femoroacetabular impingement: can the alpha angle be estimated? AJR Am J Roentgenol. 2008;190(5):1260–2.

    Article  PubMed  Google Scholar 

  89. Golfam M, Di Primio LA, Beaule PE, Hack K, Schweitzer ME. Alpha angle measurements in healthy adult volunteers vary depending on the MRI plane acquisition used. Am J Sports Med. 2017;45(3):620–6.

    Article  PubMed  Google Scholar 

  90. Rakhra KS, Sheikh AM, Allen D, Beaule PE. Comparison of MRI alpha angle measurement planes in femoroacetabular impingement. Clin Orthop Relat Res. 2009;467(3):660–5.

    Article  PubMed  Google Scholar 

  91. Domayer SE, Ziebarth K, Chan J, Bixby S, Mamisch TC, Kim YJ. Femoroacetabular cam-type impingement: diagnostic sensitivity and specificity of radiographic views compared to radial MRI. Eur J Radiol. 2011;80(3):805–10.

    Article  CAS  PubMed  Google Scholar 

  92. Smith KM, Gerrie BJ, McCulloch PC, Lintner DM, Harris JD. Comparison of MRI, CT, Dunn 45 degrees and Dunn 90 degrees alpha angle measurements in femoroacetabular impingement. Hip Int. 2018;28(4):450–5.

    Article  PubMed  Google Scholar 

  93. Shaw C, Warwick H, Nguyen KH, Link TM, Majumdar S, Souza RB, et al. Correlation of hip capsule morphology with patient symptoms from femoroacetabular impingement. J Orthop Res. 2020;39:590–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Stelzeneder D, Hingsammer A, Bixby SD, Kim YJ. Can radiographic morphometric parameters for the hip be assessed on MRI? Clin Orthop Relat Res. 2013;471(3):989–99.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Lewis .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lewis, P.B., DeFroda, S.F., Alter, T.D., Jan, K., Clapp, I.M., Nho, S.J. (2022). Magnetic Resonance Imaging of the Hip. In: Nho, S.J., Bedi, A., Salata, M.J., Mather III, R.C., Kelly, B.T. (eds) Hip Arthroscopy and Hip Joint Preservation Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-43240-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43240-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43239-3

  • Online ISBN: 978-3-030-43240-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics