Skip to main content

Hip Cartilage Restoration: Overview

  • Reference work entry
  • First Online:
Hip Arthroscopy and Hip Joint Preservation Surgery

Abstract

The diagnosis and treatment of chondral lesions in the hip is an ongoing challenge in orthopedics. Cartilage lesions in the hip rarely exist as isolated pathology and most often present secondary to conditions such as labral tears, femoroacetabular impingement (FAI), developmental dysplasia of the hip (DDH), sequelae of childhood diseases (Slipped capital femoral epiphysis and Perthes disease), or others. Plain film radiographs are indicated as the first line of imaging; however, magnetic resonance arthrogram is currently the gold standard modality for the diagnosis of chondral lesions outside of diagnostic arthroscopy. Multiple treatment modalities to address chondral lesions in the hip exist and new treatment modalities continue to be developed. Currently, debridement, microfracture, cartilage transplants (osteochondral autograft transfer system, mosaicplasty, osteochondral allograft transplantation), and incorporation of orthobiologics (autologous chondrocyte implantation, autologous matrix-induced chondrogenesis, etc.) are some techniques that have been successfully applied to address chondral pathology in the hip. We described the options of treatment, treatment algorithm, their related outcomes, and surgical techniques for chondral injuries in the hip based on the available evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clohisy JC, Knaus ER, Hunt DM, et al. Clinical presentation of patients with symptomatic anterior hip impingement. Clin Orthop Relat Res. 2009;467:638–44.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ganz R, Parvizi J, Beck M, et al. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112–20.

    Google Scholar 

  3. McCarthy JC, Lee JA. Arthroscopic intervention in early hip disease. Clin Orthop Relat Res. 2004;429:157–62.

    Google Scholar 

  4. Schmid MR, Notzli HP, Zanetti M, et al. Cartilage lesions in the hip: diagnostic effectiveness of MR arthrography. Radiology. 2003;226:382–6.

    Article  PubMed  Google Scholar 

  5. Bhatia S, Nowak DD, Briggs KK, et al. Outerbridge grade IV cartilage lesions in the hip identified at arthroscopy. Arthroscopy. 2016;32:814–9.

    Article  PubMed  Google Scholar 

  6. Fontana A, Mancini D, Gironi A, et al. Hip osteochondral lesions: arthroscopic evaluation. Hip Int. 2016;26(Suppl 1):17–22.

    Article  PubMed  Google Scholar 

  7. McCarthy JC, Noble PC, Schuck MR, et al. The Otto E. Aufranc Award: the role of labral lesions to development of early degenerative hip disease. Clin Orthop Relat Res. 2001;3793:25–37.

    Google Scholar 

  8. McCarthy JC, Lee JA. Acetabular dysplasia: a paradigm of arthroscopic examination of chondral injuries. Clin Orthop Relat Res. 2002;405:122–8.

    Google Scholar 

  9. Eijer H, Myers SR, Ganz R. Anterior femoroacetabular impingement after femoral neck fractures. J Orthop Trauma. 2001;15:475–81.

    Article  CAS  PubMed  Google Scholar 

  10. Leunig M, Beaule PE, Ganz R. The concept of femoroacetabular impingement: current status and future perspectives. Clin Orthop Relat Res. 2009;467:616–22.

    Article  PubMed  Google Scholar 

  11. Lund B, Nielsen TG, Lind M. Cartilage status in FAI patients – results from the Danish Hip Arthroscopy Registry (DHAR). SICOT J. 2017;3:44.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Beck M, Kalhor M, Leunig M, et al. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br. 2005;87:1012–8.

    Article  CAS  PubMed  Google Scholar 

  13. Beck M, Leunig M, Parvizi J, et al. Anterior femoroacetabular impingement: part II. Midterm results of surgical treatment. Clin Orthop Relat Res. 2004;418:67–73.

    Google Scholar 

  14. Beaule PE, Hynes K, Parker G, et al. Can the alpha angle assessment of cam impingement predict acetabular cartilage delamination? Clin Orthop Relat Res. 2012;470:3361–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ross JR, Zaltz I, Nepple JJ, et al. Arthroscopic disease classification and interventions as an adjunct in the treatment of acetabular dysplasia. Am J Sports Med. 2011;39(Suppl):72S–8S.

    Article  PubMed  Google Scholar 

  16. Fujii M, Nakashima Y, Noguchi Y, et al. Effect of intra-articular lesions on the outcome of periacetabular osteotomy in patients with symptomatic hip dysplasia. J Bone Joint Surg Br. 2011;93:1449–56.

    Article  CAS  PubMed  Google Scholar 

  17. Lehmann CL, Arons RR, Loder RT, et al. The epidemiology of slipped capital femoral epiphysis: an update. J Pediatr Orthop. 2006;26:286–90.

    Article  PubMed  Google Scholar 

  18. Loder RT. The demographics of slipped capital femoral epiphysis. An international multicenter study. Clin Orthop Relat Res. 1996;322:8–27.

    Google Scholar 

  19. Loder RT, Starnes T, Dikos G, et al. Demographic predictors of severity of stable slipped capital femoral epiphyses. J Bone Joint Surg Am. 2006;88:97–105.

    PubMed  Google Scholar 

  20. Kocher MS, Bishop JA, Weed B, et al. Delay in diagnosis of slipped capital femoral epiphysis. Pediatrics. 2004;113:e322–5.

    Article  PubMed  Google Scholar 

  21. Parsch K, Weller S, Parsch D. Open reduction and smooth Kirschner wire fixation for unstable slipped capital femoral epiphysis. J Pediatr Orthop. 2009;29:1–8.

    Article  PubMed  Google Scholar 

  22. Boyer DW, Mickelson MR, Ponseti IV. Slipped capital femoral epiphysis. Long-term follow-up study of one hundred and twenty-one patients. J Bone Joint Surg Am. 1981;63:85–95.

    Article  CAS  PubMed  Google Scholar 

  23. Carney BT, Weinstein SL, Noble J. Long-term follow-up of slipped capital femoral epiphysis. J Bone Joint Surg Am. 1991;73:667–74.

    Article  CAS  PubMed  Google Scholar 

  24. Dodds MK, McCormack D, Mulhall KJ. Femoroacetabular impingement after slipped capital femoral epiphysis: does slip severity predict clinical symptoms? J Pediatr Orthop. 2009;29:535–9.

    Article  PubMed  Google Scholar 

  25. Fraitzl CR, Kafer W, Nelitz M, et al. Radiological evidence of femoroacetabular impingement in mild slipped capital femoral epiphysis: a mean follow-up of 14.4 years after pinning in situ. J Bone Joint Surg Br. 2007;89:1592–6.

    Article  CAS  PubMed  Google Scholar 

  26. Rab GT. The geometry of slipped capital femoral epiphysis: implications for movement, impingement, and corrective osteotomy. J Pediatr Orthop. 1999;19:419–24.

    Article  CAS  PubMed  Google Scholar 

  27. Sink EL, Zaltz I, Heare T, et al. Acetabular cartilage and labral damage observed during surgical hip dislocation for stable slipped capital femoral epiphysis. J Pediatr Orthop. 2010;30:26–30.

    Article  PubMed  Google Scholar 

  28. Eijer H, Berg RP, Haverkamp D, et al. Hip deformity in symptomatic adult Perthes' disease. Acta Orthop Belg. 2006;72:683–92.

    PubMed  Google Scholar 

  29. Zilkens C, Bittersohl B, Jager M, et al. Clinical presentation of young adults after Legg-calve-Perthes disease. Acta Orthop Belg. 2009;75:754–60.

    PubMed  Google Scholar 

  30. Maranho DA, Nogueira-Barbosa MH, Zamarioli A, et al. MRI abnormalities of the acetabular labrum and articular cartilage are common in healed Legg-Calve-Perthes disease with residual deformities of the hip. J Bone Joint Surg Am. 2013;95:256–65.

    Article  PubMed  Google Scholar 

  31. Ross JR, Nepple JJ, Baca G, et al. Intraarticular abnormalities in residual Perthes and Perthes-like hip deformities. Clin Orthop Relat Res. 2012;470:2968–77.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Anderson LA, Peters CL, Park BB, et al. Acetabular cartilage delamination in femoroacetabular impingement. Risk factors and magnetic resonance imaging diagnosis. J Bone Joint Surg Am. 2009;91:305–13.

    Article  PubMed  Google Scholar 

  33. O'Leary JA, Berend K, Vail TP. The relationship between diagnosis and outcome in arthroscopy of the hip. Arthroscopy. 2001;17:181–8.

    Article  CAS  PubMed  Google Scholar 

  34. Keeney JA, Peelle MW, Jackson J, et al. Magnetic resonance arthrography versus arthroscopy in the evaluation of articular hip pathology. Clin Orthop Relat Res. 2004;429:163–9.

    Google Scholar 

  35. Czerny C, Hofmann S, Neuhold A, et al. Lesions of the acetabular labrum: accuracy of MR imaging and MR arthrography in detection and staging. Radiology. 1996;200:225–30.

    Article  CAS  PubMed  Google Scholar 

  36. Bittersohl B, Hosalkar HS, Kim YJ, et al. T1 assessment of hip joint cartilage following intra-articular gadolinium injection: a pilot study. Magn Reson Med. 2010;64:1200–7.

    Article  PubMed  Google Scholar 

  37. Rakhra KS. Magnetic resonance imaging of acetabular labral tears. J Bone Joint Surg Am. 2011;93(Suppl 2):28–34.

    Article  PubMed  Google Scholar 

  38. Petersilge CA. From the RSNA Refresher Courses. Radiological Society of North America. Chronic adult hip pain: MR arthrography of the hip. Radiographics. 2000;20 Spec No:S43–S52.

    Google Scholar 

  39. Kivlan BR, Martin RL, Sekiya JK. Response to diagnostic injection in patients with femoroacetabular impingement, labral tears, chondral lesions, and extra-articular pathology. Arthroscopy. 2011;27:619–27.

    Article  PubMed  Google Scholar 

  40. Naraghi A, White LM. MRI of labral and chondral lesions of the hip. AJR Am J Roentgenol. 2015;205:479–90.

    Article  PubMed  Google Scholar 

  41. Schmaranzer F, Klauser A, Kogler M, et al. Improving visualization of the central compartment of the hip with direct MR arthrography under axial leg traction: a feasibility study. Acad Radiol. 2014;21:1240–7.

    Article  PubMed  Google Scholar 

  42. Schmaranzer F, Lerch TD, Strasser U, et al. Usefulness of MR arthrography of the hip with and without leg traction in detection of intra-articular bodies. Acad Radiol. 2019;26:e252–9.

    Article  CAS  PubMed  Google Scholar 

  43. Mintz DN, Hooper T, Connell D, et al. Magnetic resonance imaging of the hip: detection of labral and chondral abnormalities using noncontrast imaging. Arthroscopy. 2005;21:385–93.

    Article  PubMed  Google Scholar 

  44. Byrd JW, Jones KS. Diagnostic accuracy of clinical assessment, magnetic resonance imaging, magnetic resonance arthrography, and intra-articular injection in hip arthroscopy patients. Am J Sports Med. 2004;32:1668–74.

    Article  PubMed  Google Scholar 

  45. Linda DD, Naraghi A, Murnaghan L, et al. Accuracy of non-arthrographic 3T MR imaging in evaluation of intra-articular pathology of the hip in femoroacetabular impingement. Skelet Radiol. 2017;46:299–308.

    Article  Google Scholar 

  46. Sutter R, Zubler V, Hoffmann A, et al. Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? AJR Am J Roentgenol. 2014;202:160–9.

    Article  PubMed  Google Scholar 

  47. Zlatkin MB, Pevsner D, Sanders TG, et al. Acetabular labral tears and cartilage lesions of the hip: indirect MR arthrographic correlation with arthroscopy--a preliminary study. AJR Am J Roentgenol. 2010;194:709–14.

    Article  PubMed  Google Scholar 

  48. Saied AM, Redant C, El-Batouty M, et al. Accuracy of magnetic resonance studies in the detection of chondral and labral lesions in femoroacetabular impingement: systematic review and meta-analysis. BMC Musculoskelet Disord. 2017;18:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. James SL, Ali K, Malara F, et al. MRI findings of femoroacetabular impingement. AJR Am J Roentgenol. 2006;187:1412–9.

    Article  PubMed  Google Scholar 

  50. Knuesel PR, Pfirrmann CW, Noetzli HP, et al. MR arthrography of the hip: diagnostic performance of a dedicated water-excitation 3D double-echo steady-state sequence to detect cartilage lesions. AJR Am J Roentgenol. 2004;183:1729–35.

    Article  PubMed  Google Scholar 

  51. Nishii T, Tanaka H, Nakanishi K, et al. Fat-suppressed 3D spoiled gradient-echo MRI and MDCT arthrography of articular cartilage in patients with hip dysplasia. AJR Am J Roentgenol. 2005;185:379–85.

    Article  PubMed  Google Scholar 

  52. Perdikakis E, Karachalios T, Katonis P, et al. Comparison of MR-arthrography and MDCT-arthrography for detection of labral and articular cartilage hip pathology. Skelet Radiol. 2011;40:1441–7.

    Article  Google Scholar 

  53. Pfirrmann CW, Duc SR, Zanetti M, et al. MR arthrography of acetabular cartilage delamination in femoroacetabular cam impingement. Radiology. 2008;249:236–41.

    Article  PubMed  Google Scholar 

  54. Aprato A, Masse A, Faletti C, et al. Magnetic resonance arthrography for femoroacetabular impingement surgery: is it reliable? J Orthop Traumatol. 2013;14:201–6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Petchprapa CN, Rybak LD, Dunham KS, et al. Labral and cartilage abnormalities in young patients with hip pain: accuracy of 3-Tesla indirect MR arthrography. Skelet Radiol. 2015;44:97–105.

    Article  Google Scholar 

  56. Schmaranzer F, Klauser A, Kogler M, et al. Diagnostic performance of direct traction MR arthrography of the hip: detection of chondral and labral lesions with arthroscopic comparison. Eur Radiol. 2015;25:1721–30.

    Article  PubMed  Google Scholar 

  57. McGuire CM, MacMahon P, Byrne DP, et al. Diagnostic accuracy of magnetic resonance imaging and magnetic resonance arthrography of the hip is dependent on specialist training of the radiologist. Skelet Radiol. 2012;41:659–65.

    Article  Google Scholar 

  58. Yen YM, Kocher MS. Chondral lesions of the hip: microfracture and chondroplasty. Sports Med Arthrosc Rev. 2010;18:83–9.

    Article  PubMed  Google Scholar 

  59. Lienert JJ, Rodkey WG, Steadman JR, et al. Microfracture techniques in hip arthroscopy. Oper Tech Orthop. 2005;15:267–72.

    Article  Google Scholar 

  60. McGill KC, Bush-Joseph CA, Nho SJ. Hip microfracture: indications, technique, and outcomes. Cartilage. 2010;1:127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Crawford K, Philippon MJ, Sekiya JK, et al. Microfracture of the hip in athletes. Clin Sports Med. 2006;25:327–35, x.

    Article  PubMed  Google Scholar 

  62. Atilla HA, Luo TD, Stubbs AJ. Arthroscopic microfracture of hip chondral lesions. Arthrosc Tech. 2017;6:e2295–9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chaharbakhshi EO, Hartigan DE, Spencer JD, et al. Do larger acetabular chondral defects portend inferior outcomes in patients undergoing arthroscopic acetabular microfracture? A matched-controlled study. Arthroscopy. 2019;35:2037–47.

    Article  PubMed  Google Scholar 

  64. Bekkers JE, Inklaar M, Saris DB. Treatment selection in articular cartilage lesions of the knee: a systematic review. Am J Sports Med. 2009;37(Suppl 1):148s–55s.

    Article  PubMed  Google Scholar 

  65. Pascual-Garrido C, Hao J, Schrock J, et al. Arthroscopic juvenile allograft cartilage implantation for cartilage lesions of the hip. Arthrosc Tech. 2016;5:e929–33.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chahla J, LaPrade RF, Mardones R, et al. Biological therapies for cartilage lesions in the hip: a new horizon. Orthopedics. 2016;39:e715–23.

    Article  PubMed  Google Scholar 

  67. Jannelli E, Fontana A. Arthroscopic treatment of chondral defects in the hip: AMIC, MACI, microfragmented adipose tissue transplantation (MATT) and other options. SICOT-J. 2017;3:43.

    Google Scholar 

  68. Lamplot JD, Schoenecker PL, Pascual-Garrido C, et al. Open reduction and internal fixation for the treatment of symptomatic osteochondritis dissecans of the femoral head in patients with sequelae of Legg-Calvé-Perthes disease. J Pediatr Orthop. 2020;40:120–8.

    Article  PubMed  Google Scholar 

  69. O’Connor M, Minkara AA, Westermann RW, et al. Outcomes of joint preservation procedures for cartilage injuries in the hip: a systematic review and meta-analysis. Orthop J Sports Med. 2018;6:2325967118776944.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Domb BG, El Bitar YF, Lindner D, et al. Arthroscopic hip surgery with a microfracture procedure of the hip: clinical outcomes with two-year follow-up. Hip Int. 2014;24:448–56.

    Article  PubMed  Google Scholar 

  71. Karthikeyan S, Roberts S, Griffin D. Microfracture for acetabular chondral defects in patients with femoroacetabular impingement: results at second-look arthroscopic surgery. Am J Sports Med. 2012;40:2725–30.

    Article  PubMed  Google Scholar 

  72. Domb BG, Redmond JM, Dunne KF, et al. A matched-pair controlled study of microfracture of the hip with average 2-year follow-up: do full-thickness chondral defects portend an inferior prognosis in hip arthroscopy? Arthroscopy. 2015;31:628–34.

    Article  PubMed  Google Scholar 

  73. Fontana A, de Girolamo L. Sustained five-year benefit of autologous matrix-induced chondrogenesis for femoral acetabular impingement-induced chondral lesions compared with microfracture treatment. Bone Joint J. 2015;97-b:628–35.

    Article  CAS  PubMed  Google Scholar 

  74. McDonald JE, Herzog MM, Philippon MJ. Performance outcomes in professional hockey players following arthroscopic treatment of FAI and microfracture of the hip. Knee Surg Sports Traumatol Arthrosc. 2014;22:915–9.

    Article  PubMed  Google Scholar 

  75. McDonald JE, Herzog MM, Philippon MJ. Return to play after hip arthroscopy with microfracture in elite athletes. Arthroscopy. 2013;29:330–5.

    Article  PubMed  Google Scholar 

  76. Schroeder JH, Hufeland M, Schütz M, et al. Injectable autologous chondrocyte transplantation for full thickness acetabular cartilage defects: early clinical results. Arch Orthop Trauma Surg. 2016;136:1445–51.

    Article  PubMed  Google Scholar 

  77. Fontana A, Bistolfi A, Crova M, et al. Arthroscopic treatment of hip chondral defects: autologous chondrocyte transplantation versus simple debridement – a pilot study. Arthroscopy. 2012;28:322–9.

    Article  PubMed  Google Scholar 

  78. Fickert S, Schattenberg T, Niks M, et al. Feasibility of arthroscopic 3-dimensional, purely autologous chondrocyte transplantation for chondral defects of the hip: a case series. Arch Orthop Trauma Surg. 2014;134:971–8.

    Article  CAS  PubMed  Google Scholar 

  79. Fontana A. Autologous Membrane Induced Chondrogenesis (AMIC) for the treatment of acetabular chondral defect. Muscles Ligaments Tendons J. 2016;6:367–71.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mancini D, Fontana A. Five-year results of arthroscopic techniques for the treatment of acetabular chondral lesions in femoroacetabular impingement. Int Orthop. 2014;38:2057–64.

    Article  PubMed  Google Scholar 

  81. Hart R, Janecek M, Visna P, et al. Mosaicplasty for the treatment of femoral head defect after incorrect resorbable screw insertion. Arthroscopy. 2003;19:E1–5.

    Article  PubMed  Google Scholar 

  82. Girard J, Roumazeille T, Sakr M, et al. Osteochondral mosaicplasty of the femoral head. Hip Int. 2011;21:542–8.

    Article  PubMed  Google Scholar 

  83. Viamont-Guerra MR, Bonin N, May O, et al. Promising outcomes of hip mosaicplasty by minimally invasive anterior approach using osteochondral autografts from the ipsilateral femoral head. Knee Surg Sports Traumatol Arthrosc. 2020;28:767–76.

    Article  PubMed  Google Scholar 

  84. Mei XY, Alshaygy IS, Safir OA, et al. Fresh osteochondral allograft transplantation for treatment of large cartilage defects of the femoral head: a minimum two-year follow-up study of twenty-two patients. J Arthroplast. 2018;33:2050–6.

    Article  Google Scholar 

  85. Meyers MH. Resurfacing of the femoral head with fresh osteochondral allografts. Long-term results. Clin Orthop Relat Res. 1985;197:111–4.

    Google Scholar 

  86. Oladeji LO, Cook JL, Stannard JP, et al. Large fresh osteochondral allografts for the hip: growing the evidence. Hip Int. 2018;28:284–90.

    Article  PubMed  Google Scholar 

  87. Eldracher M, Orth P, Cucchiarini M, et al. Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med. 2014;42:2741–50.

    Article  PubMed  Google Scholar 

  88. Ganz R, Gill TJ, Gautier E, et al. Surgical dislocation of the adult hip a technique with full access to the femoral head and acetabulum without the risk of avascular necrosis. J Bone Joint Surg Br. 2001;83:1119–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Pascual-Garrido .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kamenaga, T., Haneda, M., Pascual-Garrido, C. (2022). Hip Cartilage Restoration: Overview. In: Nho, S.J., Bedi, A., Salata, M.J., Mather III, R.C., Kelly, B.T. (eds) Hip Arthroscopy and Hip Joint Preservation Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-43240-9_156

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43240-9_156

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43239-3

  • Online ISBN: 978-3-030-43240-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics