Skip to main content

Environmental Impact on Metabolism

  • Living reference work entry
  • First Online:
Environmental Endocrinology and Endocrine Disruptors

Abstract

The prevalence of obesity and type 2 diabetes (T2D) is dramatically increasing worldwide during the last few decades. This phenomenon is mostly due to lifestyle factors (sedentariness, noxious food), along with genetic susceptibility. Recent evidence points out the role of endocrine-disrupting chemicals (EDCs) having obesogenic and/or diabetogenic properties that may also play a pathophysiological role in the occurrence of metabolic diseases. Both experimental and epidemiological evidence support a role for early and chronic exposure to EDCs with endocrine- and metabolic-disrupting effects. Most of them are present in the food chain and are stored in the fat mass after absorption. Each of them may act through several pathways; among them, the disruption of gut microbiota has been identified as one of the mechanisms through which EDCs exposure can promote obesity and T2D. Therefore, this chapter summarizes the evidence regarding the EDCs with obesogenic and/or diabetogenic characteristics and their properties to blunt metabolic health through the disruption of gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

BMI:

Body mass index

BPA:

Bisphenol A

CVD:

Cardiovascular diseases

EDCs:

Endocrine-disrupting chemicals

GLP-1:

Glucagon-like peptide-1

HR:

Hazard ratio

IBD:

Inflammatory bowel disease

IBS:

Irritable bowel syndrome

IL:

Interleukin

IR:

Insulin resistance

LPS:

Lipopolysaccharides

MSCs:

Mesenchymal stem cells

NAFLD:

Nonalcoholic fatty liver disease

NAS:

Noncaloric artificial sweeteners

NLRP3:

NOD-like receptor protein 3

NLRs:

Nucleotide-binding oligomerization domain-like receptors

POP:

Persistent organic pollutants

PPARγ:

Peroxisome proliferator-activated receptor-gamma

ROS:

Reactive oxygen species

SCFAs:

Short-chain fatty acid

T2D:

Type 2 diabetes

TBT:

Tributyltin

TLRs:

Toll-like receptors

References

  • Angelucci F, et al. Antibiotics, gut microbiota, and Alzheimer’s disease. J Neuroinflammation. 2019;16(1):108.

    Article  Google Scholar 

  • Barrea L, et al. From gut microbiota dysfunction to obesity: could short-chain fatty acids stop this dangerous course? Hormones (Athens). 2019;18(3):245–50.

    Article  Google Scholar 

  • Bateman ME, et al. The effects of endocrine disruptors on adipogenesis and osteogenesis in mesenchymal stem cells: a review. Front Endocrinol (Lausanne). 2016;7:171.

    Google Scholar 

  • Burgio E, Lopomo A, Migliore L. Obesity and diabetes: from genetics to epigenetics. Mol Biol Rep. 2015;42(4):799–818.

    Article  CAS  Google Scholar 

  • Carmena R, Betteridge DJ. Diabetogenic action of statins: mechanisms. Curr Atheroscler Rep. 2019;21(6):23.

    Article  Google Scholar 

  • Chamorro-Garcia R, et al. Ancestral perinatal obesogen exposure results in a transgenerational thrifty phenotype in mice. Nat Commun. 2017;8(1):2012.

    Article  Google Scholar 

  • Cholesterol Treatment Trialists, C. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet. 2019;393(10170):407–15.

    Article  Google Scholar 

  • Cybulska B, Klosiewicz-Latoszek L. How do we know that statins are diabetogenic, and why? Is it an important issue in the clinical practice? Kardiol Pol. 2018;76(8):1217–23.

    Article  Google Scholar 

  • Egusquiza RJ, Blumberg B. Environmental obesogens and their impact on susceptibility to obesity: new mechanisms and chemicals. Endocrinology. 2020;161(3):bqaa024. https://doi.org/10.1210/endocr/bqaa024. PMID: 32067051; PMCID: PMC7060764.

  • El Ghoch M, Fakhoury R. Challenges and new directions in obesity management: lifestyle modification programmes, pharmacotherapy and bariatric surgery. J Popul Ther Clin Pharmacol. 2019;26(2):e1–4.

    Article  Google Scholar 

  • Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–71.

    Article  CAS  Google Scholar 

  • Galvez-Ontiveros Y, et al. Endocrine disruptors in food: impact on gut microbiota and metabolic diseases. Nutrients. 2020;12(4):1158. https://doi.org/10.3390/nu12041158. PMID: 32326280; PMCID: PMC7231259.

  • Geller LT, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 2017;357(6356):1156–60.

    Article  CAS  Google Scholar 

  • Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science. 2018;362(6416):776–80.

    Article  CAS  Google Scholar 

  • Gopalakrishnan V, et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33(4):570–80.

    Article  CAS  Google Scholar 

  • Gore AC, et al. EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1–E150.

    Google Scholar 

  • Gupta RK, Fahmi N, Garg B, Dutta S, Sachar S. Endocrine disruption and obesity: a current review on environmental obesogens. Curr Res Green Sustain Chem. 2020;3:100009

    Google Scholar 

  • Gurung M, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590.

    Article  Google Scholar 

  • Heindel JJ. Endocrine disruptors and the obesity epidemic. Toxicol Sci. 2003;76(2):247–9.

    Article  CAS  Google Scholar 

  • Heindel JJ, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3–33.

    Article  CAS  Google Scholar 

  • Heinritz SN, et al. Impact of a high-fat or high-fiber diet on intestinal microbiota and metabolic markers in a pig model. Nutrients. 2016;8(5):317. https://doi.org/10.3390/nu8050317. PMID: 27223303; PMCID: PMC4882729.

  • Kim BJ, et al. Environmental changes, microbiota, and allergic diseases. Allergy Asthma Immunol Res. 2014;6(5):389–400.

    Article  CAS  Google Scholar 

  • Kim DH, et al. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: targeted and untargeted community analysis with correlation of biomarkers. J Nutr Biochem. 2017;44:35–43.

    Article  CAS  Google Scholar 

  • La Merrill M, et al. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring. PLoS One. 2014;9(7):e103337.

    Article  Google Scholar 

  • Laakso M, Kuusisto J. Diabetes secondary to treatment with statins. Curr Diab Rep. 2017;17(2):10.

    Article  Google Scholar 

  • Laudisi F, Stolfi C, Monteleone G. Impact of food additives on gut homeostasis. Nutrients. 2019;11(10):2334. https://doi.org/10.3390/nu11102334. PMID: 31581570; PMCID: PMC6835893.

  • Laursen MF, et al. Infant gut microbiota development is driven by transition to family foods independent of maternal obesity. mSphere. 2016;1(1):e00069-15. https://doi.org/10.1128/mSphere.00069-15. PMID: 27303699; PMCID: PMC4863607

  • Leong KSW, et al. Antibiotics, gut microbiome and obesity. Clin Endocrinol. 2018;88(2):185–200.

    Article  Google Scholar 

  • Lind PM, Lind L. Endocrine-disrupting chemicals and risk of diabetes: an evidence-based review. Diabetologia. 2018;61(7):1495–502.

    Article  CAS  Google Scholar 

  • Lohner S, Toews I, Meerpohl JJ. Health outcomes of non-nutritive sweeteners: analysis of the research landscape. Nutr J. 2017;16(1):55.

    Article  Google Scholar 

  • Lopez-Moreno A, et al. Probiotic strains and intervention total doses for modulating obesity-related microbiota dysbiosis: a systematic review and meta-analysis. Nutrients. 2020;12(7):1921. https://doi.org/10.3390/nu12071921. PMID: 32610476; PMCID: PMC7400323

  • Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369–79.

    Article  CAS  Google Scholar 

  • MacKay H, Patterson ZR, Abizaid A. Perinatal exposure to low-dose bisphenol-A disrupts the structural and functional development of the hypothalamic feeding circuitry. Endocrinology. 2017;158(4):768–77.

    Article  CAS  Google Scholar 

  • Mukherjee S, et al. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: lessons from recent findings. J Nutr Biochem. 2018;61:111–28.

    Article  CAS  Google Scholar 

  • Murphy EA, Velazquez KT, Herbert KM. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care. 2015;18(5):515–20.

    Article  CAS  Google Scholar 

  • Naville D, et al. Low-dose food contaminants trigger sex-specific, hepatic metabolic changes in the progeny of obese mice. FASEB J. 2013;27(9):3860–70.

    Article  CAS  Google Scholar 

  • Nogacka AM, et al. Early microbiota, antibiotics and health. Cell Mol Life Sci. 2018;75(1):83–91.

    Article  CAS  Google Scholar 

  • Oriach CSR, Stanton C, Cryan JF, Dinan TG. Food for thought: the role of nutrition in the microbiota-gut-brain axis. Clin Nutr Exp. 2016:25–38.

    Google Scholar 

  • Padmanabhan V, Cardoso RC, Puttabyatappa M. Developmental programming, a pathway to disease. Endocrinology. 2016;157(4):1328–40.

    Article  CAS  Google Scholar 

  • Petrakis D, et al. Endocrine disruptors leading to obesity and related diseases. Int J Environ Res Public Health. 2017;14(10):1282. https://doi.org/10.3390/ijerph14101282. PMID: 29064461; PMCID: PMC5664782.

  • Rieder R, et al. Microbes and mental health: a review. Brain Behav Immun. 2017;66:9–17.

    Article  CAS  Google Scholar 

  • Singh RK, Wheildon N, Ishikawa S. Food additive P-80 impacts mouse gut microbiota promoting intestinal inflammation, obesity and liver dysfunction. SOJ Microbiol Infect Dis. 2016;4(1):10.15226/sojmid/4/1/00148. https://doi.org/10.15226/sojmid/4/1/00148. Epub 2016 Jun 1. PMID: 27430014; PMCID: PMC4944853.

  • Sircana A, et al. Altered gut microbiota in type 2 diabetes: just a coincidence? Curr Diab Rep. 2018;18(10):98.

    Article  Google Scholar 

  • Song Y, et al. Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: a systematic review and meta-analysis. J Diabetes. 2016;8(4):516–32.

    Article  CAS  Google Scholar 

  • Starek A. Tributyltin compounds – the substances noxious to health. Rocz Panstw Zakl Hig. 2009;60(1):3–11.

    CAS  Google Scholar 

  • Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–36.

    Article  CAS  Google Scholar 

  • Tseng CH, Wu CY. The gut microbiome in obesity. J Formos Med Assoc. 2019;118(Suppl 1):S3–9.

    Article  Google Scholar 

  • Wolters M, et al. Dietary fat, the gut microbiota, and metabolic health – a systematic review conducted within the MyNewGut project. Clin Nutr. 2019;38(6):2504–20.

    Article  Google Scholar 

  • Yaribeygi H, et al. Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol. 2019;234(6):8152–61.

    Article  CAS  Google Scholar 

  • Yu LC. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. J Biomed Sci. 2018;25(1):79.

    Article  CAS  Google Scholar 

  • Zinocker MK, Lindseth IA. The Western diet-microbiome-host interaction and its role in metabolic disease. Nutrients. 2018;10(3):365. https://doi.org/10.3390/nu10030365. PMID: 29562591; PMCID: PMC5872783.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Authors’ contributions. The authors’ responsibilities were as follows: GM and RP: were responsible for the concept of this chapter and drafted the manuscript; LB, EFT, EGV, CdA, CO, GC, MEG, and AC: provided a critical review of the chapter; CdA significantly contributed to chapter implementation before resubmission and prepared the final figures. All authors contributed to and agreed on the final version of the manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Muscogiuri, G. et al. (2023). Environmental Impact on Metabolism. In: Pivonello, R., Diamanti-Kandarakis, E. (eds) Environmental Endocrinology and Endocrine Disruptors. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-030-38366-4_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38366-4_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38366-4

  • Online ISBN: 978-3-030-38366-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics