Skip to main content

Effects of Abiotic Stress on Seed Germination of Some Algerian Sahara Psammohalophyte Species

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

In arid natural habitats, shrubs are subjected to heterogeneous stressful environmental conditions such as high temperatures, salinity, and drought. It is important to study how native and endemic shrubs respond to these stresses at the germination stage in order to understand these species’ strategies of adaptation to the desert environment. For this purpose, we studied germination of psammohalophyte seeds in conditions of abiotic stress caused by different temperatures (5, 10, 15, 20, 25, 30, 35, and 40 °C), different salt concentrations (0, 50, 100, 150, 200, 250, and 300 mM NaCl), and different water potential values (−0.3, −0.5, −1, −3, and −7 MPa, achieved with use of polyethylene glycol 6000 (PEG6000)) in comparison with control conditions. The final germination percentages and germination speeds of seeds of the following six psammohalophytes were tested: Oudneya africana, Helianthemum lippii, Genista saharae, Retama raetam, Peganum harmala, and Zygophyllum album. The results showed that the degree of response to different temperatures varied between species. The optimal germination temperatures for different species’ seeds ranged from 15 °C to 35 °C. The presence of PEG6000 and NaCl caused decreases in germination percentages and germination speeds in O. africana, R. raetam, P. harmala, and Z. album, whereas G. saharae showed a good response to salinity, with an average final germination percentage of 72.71 ± 6.26% and an average germination speed of 5.18 ± 0.44% day−1. H. lippii behaved in the same way with drought stress (with an average germination percentage of 88.83 ± 0.93% and a very fast germination speed of 6.34 ± 0.06% day−1) as it did with salinity stress (with an average germination percentage of 70.14 ± 5.40% and a germination speed of 4.94 ± 0.38% day−1). In general, H. lippii and G. saharae seeds seemed to be the most resistant to these abiotic constraints. Seed germination of the other species occurred only when these constraints were removed, thereby increasing the chances of seedling survival, which was remarkable in the natural environments they inhabit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Baskin, C. C., & Baskin, J. M. (1998). Seeds: Ecology, biogeography, and evolution of dormancy and germination. San Diego: Academic Press.

    Google Scholar 

  • Baskin, J. M., Baskin, C. C., & Li, X. (2000). Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biology, 15, 139–152.

    Google Scholar 

  • Baskin C., & Baskin J. M. (2014). Seeds: Ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego.

    Google Scholar 

  • Bewley, J. D., & Black, M. (1994). Seeds: Physiology of development and germination. New York: Plenum Press.

    Google Scholar 

  • Bliss, R. D., Platt-Abia, K. A., & Thomson, W. W. (1984). Changes in plasmalemma organisation in cowpea radicle during imbibition in water and NaCl solutions. Plant, Cell and Environment, 7, 601–606.

    Google Scholar 

  • Bliss, R. D., Platt-Abia, K. A., & Thomson, W. W. (1986). The inhibitory effect of NaCl on barley germination. Plant, Cell and Environment, 9, 727–733.

    Article  CAS  Google Scholar 

  • Breckle, S.-W. (1983). Temperate deserts and semi-deserts of Afghanistan and Iran. In D.-W. Goodall & N. West (Eds.), Ecosystems of the world (pp. 271–319). Amsterdam: Elsevier.

    Google Scholar 

  • Chapman, V. J. (1960). Salt marshes and salt deserts of the world. London: Leonard Hill.

    Google Scholar 

  • Chehma, A., Faye, B., & et Djebar, M. R. (2008). Productivité fourragère et capacité de charge des parcours camelins du Sahara septentrional Algérien. Sécheresse, 19(2), 115–21.

    Google Scholar 

  • Doing, H. (1985). Coastal fore-dune zonation and succession in various parts of the world. Vegetatio, 61, 65–75.

    Article  Google Scholar 

  • El-Keblawy, A. (2004). Salinity effects on seed germination of the common desert range grass, Panicum turgidum. Seed Science and Technology, 32, 943–948.

    Article  Google Scholar 

  • El-Keblawy, A. (2013). Impacts of dormancy-regulating chemicals on innate and salinity-induced dormancy of four forage grasses native to Arabian deserts. Grass and Forage Science, 68, 288–289.

    Article  CAS  Google Scholar 

  • El-Keblawy, A., & Gairola, S. (2017). Dormancy regulating chemicals alleviate innate seed dormancy and promote germination of desert annuals. Journal of Plant Growth Regulation, 36, 300–311.

    Article  CAS  Google Scholar 

  • El-Keblawy, A., Bhatt, A., & Gairola, S. (2015b). Storage on maternal plants affects light and temperature requirements during germination in two small seeded halophytes in the Arabian deserts. Pakistan Journal of Botany, 47, 1701–1708.

    CAS  Google Scholar 

  • Fenner, M. (1991). The effects of the parent environment on seed germinability. Seed Sci Res, 1, 75–84.

    Google Scholar 

  • Gorai, M., Vadel, M. A., & Neffati, M. (2006). Seed germination characteristics of Phragmites communis: Effects of temperatureand salinity. Belg. J. Bot, 139, 78–86.

    Google Scholar 

  • Gorai, M., & Neffati, M. (2007). Germination responses of Reaumuria vermiculata to salinity and temperature. Annals of Applied Biology, 151, 53–59.

    Article  Google Scholar 

  • Gutterman, Y., & Agami, M. (1987). A comparative germination study of seeds of Helianthemum vesicarium Boiss. and H. ventosum Boiss., perennial desert shrub species inhabiting two different neighbouring habitats in the Negev desert highlands, Israel. Journal of Arid Environments, 12(3), 215–221.

    Google Scholar 

  • Gutterman, Y. (1993). Seed germination in desert plants. Berlin: Springer.

    Book  Google Scholar 

  • Gutterman, Y. (1994). Strategies of seed dispersal and germination in plants inhabiting deserts. Botanical Review, 60, 373–425.

    Article  Google Scholar 

  • Gutterman, Y. (2002). Survival strategies of annual desert plants: Adaptations of desert organisms. Berlin: Springer.

    Book  Google Scholar 

  • Huang, Z., Zhang, X., Zheng, G., & Gutterman, Y. (2003). Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron. Journal of Arid Environments, 55, 453–464.

    Google Scholar 

  • Ismail, A. M. A. (1990). Germination ecophysiology in populations of Zygophyllum qatarense Hadidi from contrasting habitats: Effect of temperature, salinity and growth regulators with special reference to fusicoccin. Journal of Arid Environments, 18, 185–194.

    Article  Google Scholar 

  • ISTA. (1966). International Seed Testing Association. Proceedings of the International Seed Testing Association, 31, 1–152.

    Google Scholar 

  • Jurado, E., & Westoby, M. (1992). Germination biology of selected central Australian plants. Aust J EcoI, 17, 341–348.

    Google Scholar 

  • Karssen, C. M., & Hilhorst, H. W. M. (1992). Effect of chemical environment on seed germination. In M. Fenner (Ed.), Seeds: The ecology of regeneration in plant communities (pp. 327–348). Wallingford: CABI.

    Google Scholar 

  • Khan, M. A., & Ungar, I. A. (1984). The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis Willd. American Journal of Botany, 71, 481–489.

    Google Scholar 

  • Khan, M. A., & Ungar, I. A. (1996). Effects of light, salinity, and thermoperiod on the seed germination of halophytes. Canadian Journal of Botany, 75, 835–841.

    Google Scholar 

  • Khan, M. A., & Ungar, I. A. (1997). Germination responses of the subtropical annual halophyte Zygophyllum simplex. Seed Science and Technology, 25, 83–91.

    Google Scholar 

  • Khan, M. A., Gul, B., & Weber, D. J. (2000). Germination responses of Salicornia rubra to temperature and salinity. Journal of Arid Environments, 45, 207–214.

    Google Scholar 

  • Khan, M. A., Gul, B., & Weber, D. J. (2001). Germination of dimorphic seeds of Suaeda moquinii under high salinity stress. Australian Journal of Botany, 49, 185–192.

    Google Scholar 

  • Khan, M. A. (2003). Halophyte Psamohalophyte seed: Success and pitfalls. In A. M. Hegazi, H. M. El-shaer, S. El-Demerdashe, R. A. Guirgis, A. Abdel Salam Metwally, F. A. Hassan, & H. E. Khashaba (Eds.), Proceedings of the international symposium on optimum resource utilization in salt affected ecosystems in arid and semi arid regions (pp. 346–358). Cairo: Desert Research Center.

    Google Scholar 

  • Li, L., & Zhang, X. M. (2007). Germination strategies of two halophytes in Salt Desert of northwestern China. Science in China Series D: Earth Sciences, 50(S1), 115–121.

    Google Scholar 

  • Monod, T. (1992). Du désert. Sécheresse, 3(1), 7–24.

    Google Scholar 

  • Neffati, M. (1994). Caractérisation morphologique de certaines espèces végétales nord-africaines. Implications pour l’amélioration pastorale. Ph.D. Thesis. Gent University, Belgium.

    Google Scholar 

  • Ozenda, P. (1991). Flore de Sahara. 3eme édition mise à jour et augmentée, Ed C.N.R.S., Paris. 662 p.

    Google Scholar 

  • Pujol, J. A., Calvo, J. F. & Ramirez-Diaz, L. (2000). Recovery of germination from different osmotic conditions by four halophytes from southeastern Spain. Annals of Botany, 85, 279–286.

    Google Scholar 

  • Schat, H. (1983). Germination ecology of some dune slack pioneers. Acta Botanica Neerlandica, 32, 203–212.

    Article  Google Scholar 

  • Thanos, C. A., Georghiou, K., Kadis, C., & Pantazi, C. (1992). Cistaceae: a plant family with hard seeds. Israel Journal of Botany, 41, 251–263.

    Google Scholar 

  • Thanos, C. A., Kadis C. C., & Skarou, F. (1995). Ecophysiology of germination in the aromatic plants thyme, savory and oregano (Labiatae). Seed Sci Res, 5, 161–170.

    Google Scholar 

  • Tlig, T., Gorai, M., & Naffati, M. (2008). Germination responses of Diplotaxis harra to temperature and salinity. Flora, 203, 421–428.

    Article  Google Scholar 

  • Trabelsi, H. (2016). Rôle du dromadaire dans la régénération et la prolifération du couvet floristique du Sahara septentrional algérien. Thèse de Doctorat U. K. M. Ouargla.

    Google Scholar 

  • Ungar, I. A. (1962). Influence of salinity on seed germination in succulent halophytes. Ecology, 43, 763–764.

    Article  Google Scholar 

  • van Rheede van Oudtshoorn, K.,  & van Rooyen, M. W. (1999). Dispersal biology of desert plants. Springer Berlin.

    Google Scholar 

  • Woodell, S. R. J. (1985). Salinity and seed germination patterns in coastal plants. Vegetatio, 61, 223–229.

    Google Scholar 

  • Zahran, M. A. (1982). Ecologie of the halophytic vegetation of Egypt. In D. N. Sen & K. S. Rajurohit (Eds.), Contributions to the ecology of halophytes (pp. 3–20). The Hague: Dr W. Junk.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafida Trabelsi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Trabelsi, H., Kherraze, M.E. (2020). Effects of Abiotic Stress on Seed Germination of Some Algerian Sahara Psammohalophyte Species. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_84-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_84-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics