Skip to main content

Soil Respiration and Photosynthetic Carbon Gain on an Abundant Coastal Land After Plantation of Tamarix chinensis

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

A field experiment was performed to assess the dynamics of soil respiration and its key influencing factors in a coastal saline wasteland along the Bohai Sea at 3 and 10 years after planting Tamarix chinensis. The results showed that the cultivation of T. chinensis, which corresponded to relatively higher root biomass and soil-infiltration ability, can result in a significantly higher rate of soil respiration than that of abandoned saline-alkali bare land as well as regulated net photosynthesis along with other CO2/H2O gas exchange parameters. The root growth rate was the key factor that affected the soil respiration rate more than the total root biomass of the plants did. The soil surface temperature was also an important factor that affected the soil respiration rate in each land, and the soil salt and water contents were closely related to only root respiration on the lands planted with 3-year-old T. chinensis due to the short-term improvement of the soil by the plant community; long-term cultivation of T. chinensis reduced the soil surface salinity during the period of the highest evaporation and provided an adequate carbon source for the growth of bacteria, fungi, and actinomycetes. This research can offer a reference value for the characteristics of carbon sequestration during the process of vegetation regeneration on coastal saline lands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi, M., Ito, A., Yonemura, S., et al. (2017). Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. Journal of Environmental Management, 200, 97–104.

    Article  PubMed  Google Scholar 

  • Ashraf, M. Y., Awan, A. R., & Mahmood, K. (2012). Rehabilitation of saline ecosystems through cultivation of salt tolerant plants. Pakistan Journal of Botany, 44, 69–75.

    CAS  Google Scholar 

  • Bernhardt, E. S., Barber, J. J., Pippen, J. S., et al. (2006). Long-term effects of free air CO2 enrichment (FACE) on soil respiration. Biogeochemistry, 77(1), 91–116.

    Article  Google Scholar 

  • Bondlamberty, B., Bolton, H., Fansler, S., et al. (2016). Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment. PLoS One, 11(3), e0150599.

    Article  CAS  Google Scholar 

  • Bowden, R. D., Nadelhoffer, K. J., Boone, R. D., et al. (1993). Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Canadian Journal of Forest Research, 23(7), 1402–1407.

    Article  Google Scholar 

  • Clark, K. L., Skowronski, N., Hom, J.,(2010). Invasive insects impact forest carbon dynamics. Global Change Biology, 16(1), 88–101.

    Google Scholar 

  • Carol, E., Braga, F., Donnici, S., et al. (2017). The hydrologic landscape of the Ajo coastal plain, Argentina: An assessment of human-induced changes. Anthropocene, 18, 1–14.

    Article  Google Scholar 

  • Chen, B., Liu, S., Ge, J., et al. (2010). Annual and seasonal variations of Q10 soil respiration in the sub-alpine forests of the eastern Qinghai-Tibet Plateau, China. Soil Biology and Biochemistry, 42(10), 1735–1742.

    Article  CAS  Google Scholar 

  • Cui, X., Hu, J., Wang, J., et al. (2016). Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by Illumina sequencing. Applied Soil Ecology, 98, 140–149.

    Article  Google Scholar 

  • Davidson, E. A., Verchot, L. V., Cattânio, J. H., et al. (2000). Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48(1), 53–69.

    Article  CAS  Google Scholar 

  • Davidson, E. A., Savage, K., Bolstad, P., et al. (2016). Belowground carbon allocation in forests estimated from litter fall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology, 113(1), 39–51.

    Google Scholar 

  • Epron, D., Farque, L., Lucot, E., et al. (1999). Soil CO2 efflux in a beech forest: The contribution of root respiration. Annals of Forest Science, 56(4), 289–295.

    Article  Google Scholar 

  • Fan, X., Pedroli, B., Liu, G., et al. (2011). Potential plant species distribution in the Yellow River Delta under the influence of groundwater level and soil salinity. Ecohydrology, 4(6), 744–756.

    Article  Google Scholar 

  • Feng, X., An, P., Guo, K., et al. (2017). Growth, root compensation and ion distribution in Lycium chinense under heterogeneous salinity stress. Scientia Horticulturae, 226, 24–32.

    Article  CAS  Google Scholar 

  • Gu, L., Hanson, P. J., Post, W. M., et al. (2008). A novel approach for identifying the true temperature sensitivity from soil respiration measurements. Global Biogeochemical Cycles, 22(4), 184–189.

    Article  CAS  Google Scholar 

  • Guo, K., & Liu, X. (2014). Dynamics of melt-water quality and quantity during saline ice melting and its effects on the infiltration and desalinization of coastal saline soils. Agricultural Water Management, 139, 1–6.

    Article  Google Scholar 

  • Guo, Y., Yu, Q., Feng, X., et al. (2015). Effects of partial defoliation on the growth, ion relations and photosynthesis of Lycium chinense Mill. under salt stress. Archives of Biological Sciences, 67(4), 1185–1194.

    Article  Google Scholar 

  • Han, G., Luo, Y., Li, D., et al. (2014). Ecosystem photosynthesis regulates soil respiration on a diurnal scale with a short-term time lag in a coastal wetland. Soil Biology and Biochemistry, 68, 85–94.

    Article  CAS  Google Scholar 

  • Heuer, H., Krsek, M., Baker, P., et al. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63(8), 3233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huissteden, J. V., Petrescu, A. M. R., Hendriks, D. M. D., et al. (2009). Sensitivity analysis of a wetland methane emission model based on temperate and arctic wetland sites. Biogeosciences Discussions, 6(5), 3035–3051.

    Article  Google Scholar 

  • Jin, W., Yang, J., & Wang, X. (2013). Spatial distribution of organic carbon in coastal saline soil and its correlation with reclamation age. Transactions of the Chinese Society of Agricultural Engineering, 29(5), 89–94.

    Google Scholar 

  • Kaisermann, A., Roguet, A., Nunan, N., et al. (2013). Agricultural management affects the response of soil bacterial community structure and respiration to water-stress. Soil Biology & Biochemistry, 66, 69–77.

    Article  CAS  Google Scholar 

  • Khan, M. A., Ansari, R., Ali, H., et al. (2009). Panicum turgidum, a potentially sustainable cattle feed alternative to maize for saline areas. Agriculture Ecosystems & Environment, 129(4), 542–546.

    Article  Google Scholar 

  • Kucharik, C. J., Foley, J. A., Delire, C., et al. (2000). Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles, 14(3), 795–825.

    Article  CAS  Google Scholar 

  • Li, Z., Liu, X., Zhang, X., et al. (2008). Infiltration of melting saline ice water in soil columns: Consequences on soil moisture and salt content. Agricultural Water Management, 95(4), 498–502.

    Article  Google Scholar 

  • Li, Z., Li, G., & Qin, P. (2010). The prediction of ecological potential for developing salt-tolerant oil plants on coastal saline land in Sheyang Saltern, China. Ecological Engineering, 36(1), 27–35.

    Article  Google Scholar 

  • Li, X., Kang, Y., Wan, S., et al. (2015). Reclamation of very heavy coastal saline soil using drip-irrigation with saline water on salt-sensitive plants. Soil and Tillage Research, 146, 159–173.

    Article  Google Scholar 

  • Liu, C. M., Kachur, S., Dwan, M. G., et al. (2012). FungiQuant: A broad-coverage fungal quantitative real-time PCR assay. BMC Microbiology, 12(1), 255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, X., Zhang, X., Sun, H., et al. (2014). An improved variety for heavy costal saline soil landscaping use: Tamarix chinensis ‘Haicheng 1’. Scientia Silvae Sinica, 50(11): 208. (in Chinese). https://doi.org/10.11707/j.1001-7488.20141128.

  • Liu, X., Zhang, W., Zhang, B., et al. (2016). Diurnal variation in soil respiration under different land uses on Taihang Mountain, North China. Atmospheric Environment, 125, 283–292.

    Article  CAS  Google Scholar 

  • Marschner, P., Hatam, Z., & Cavagnaro, T. R. (2015). Soil respiration, microbial biomass and nutrient availability after the second amendment are influenced by legacy effects of prior residue addition. Soil Biology & Biochemistry, 88, 169–177.

    Article  CAS  Google Scholar 

  • Martin, J. G., & Bolstad, P. V. (2009). Variation of soil respiration at three spatial scales: Components within measurements, intra-site variation and patterns on the landscape. Soil Biology & Biochemistry, 41(3), 530–543.

    Article  CAS  Google Scholar 

  • Mishra, A., Sharma, S. D., & Khan, G. H. (2003). Improvement in physical and chemical properties of sodic soil by 3, 6 and 9 years old plantation of Eucalyptus tereticornis: Biorejuvenation of sodic soil. Forest Ecology and Management, 184(1–3), 115–124.

    Article  Google Scholar 

  • Monson, R. K., Lipson, D. L., Burns, S. P., et al. (2006). Winter forest soil respiration controlled by climate and microbial community composition. Nature, 439(7077), 711.

    Article  CAS  PubMed  Google Scholar 

  • Ohrtman, M. K., Clay, S. A., Clay, D. E., et al. (2015). Preventing saltcedar (Tamarix spp.) seedling establishment in the Northern Prairie Pothole region. Invasive Plant Science & Management, 4, 427–436.

    Article  Google Scholar 

  • Olsson, L., Ye, S., Yu, X., et al. (2015). Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China. Biogeosciences Discussions, 12(4), 3469–3503.

    Article  Google Scholar 

  • Pacific, V. J., Mcglynn, B. L., Riveros Iregui, D. A., et al. (2015). Landscape structure, groundwater dynamics, and soil water content influence soil respiration across riparian–hillslope transitions in the Tenderfoot Creek Experimental Forest, Montana. Hydrological Processes, 25(5), 811–827.

    Article  CAS  Google Scholar 

  • Rahman, M. A., Rahman, M. A., Barma, N. C. D., et al. (2016). Triple cereal system with fertilizer and planting management for improving productivity in coastal saline soils of Bangladesh. Bangladesh Journal of Agricultural Research, 41(1), 1–15.

    Article  Google Scholar 

  • Ravindran, K. C., Venkatesan, K., Balakrishnan, V., et al. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology & Biochemistry, 39(10), 2661–2664.

    Article  CAS  Google Scholar 

  • Reynolds, L. L., Johnson, B. R., Pfeifermeister, L., et al. (2015). Soil respiration response to climate change in Pacific Northwest prairies is mediated by a regional Mediterranean climate gradient. Global Change Biology, 21(1), 487–500.

    Article  PubMed  Google Scholar 

  • Saiz, G., Byrne, K. A., Butterbachbahl, K., et al. (2006). Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Global Change Biology, 12(6), 1007–1020.

    Article  Google Scholar 

  • Shuyskaya, E., Rakhamkulova, Z., Lebedeva, M., Kolesnikov, A., Safarova, A., Borisochkina, T., & Toderich, K. (2017). Different mechanisms of ion homeostasis are dominant in the recretohalophyte Tamarix ramosissima under different soil salinity. Acta Physiologiae Plantarum, 39, 81.

    Article  CAS  Google Scholar 

  • Stagg, C. L., Baustian, M. M., Perry, C. L., et al. (2017). Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient. Journal of Ecology, 00, 1–16.

    Google Scholar 

  • Sun, L., Liu, W., Liu, G., Chen, T., Zhang, W., Wu, X., Zhang, G., Zhang, Y., Li, L., Zhang, B., Zhang, B., Wang, B., & Yang, R. (2016). Temporal and spatial variations in the stable carbon isotope composition and carbon and nitrogen contents in current-season twigs of Tamarix chinensis Lour. and their relationships to environmental factors in the Laizhou Bay wetland in China. Ecological Engineering, 90, 417–426.

    Article  Google Scholar 

  • Suzuki, M. T., Taylor, L. T., & Delong, E. F. (2000). Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-Nuclease Assays. Applied and Environmental Microbiology, 66(11), 4605–4614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vereecken, H., Huisman, J. A., Franssen, H. J. H., et al. (2015). Soil hydrology: Recent methodological advances, challenges, and perspectives. Water Resources Research, 51(4), 2616–2633.

    Article  Google Scholar 

  • Way, D. A., Katul, G. G., Vico, G., & Manzoni, S. (2014). Increasing water use efficiency along the C3 to C4 evolutionary pathway: A stomatal optimization perspective. Journal of Experimental Botany, 65, 3683–3693.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei, X. Y., & Liu, X. J. (2014). Microbial ecological characteristics of planted saline-alkali soil in coastal saline area by freezing saline water irrigation. Journal of Agricultural University of Hebei, 37(1), 22–26. (in Chinese).

    Google Scholar 

  • Xia, J., Zhang, S., Guo, J., et al. (2015). Critical effects of gas exchange parameters in Tamarix chinensis Lour on soil water and its relevant environmental factors on a shell ridge island in China’s Yellow River Delta. Ecological Engineering, 76, 36–46.

    Article  Google Scholar 

  • Xia, J., Zhao, X., Ren, J., Lang, Y., Qu, F., & Xu, H. (2017). Photosynthetic and water physiological characteristics of Tamarix chinensis under different groundwater salinity conditions. Environmental and Experimental Botany, 138, 173–183.

    Article  CAS  Google Scholar 

  • Yan, N., & Marschner, P. (2013). Response of soil respiration and microbial biomass to changing EC in saline soils. Soil Biology & Biochemistry, 65(5), 322–328.

    Article  CAS  Google Scholar 

  • Zeng, X., Zhang, W., Shen, H., et al. (2014). Soil respiration response in different vegetation types at Mount Taihang, China. Catena, 116, 78–85.

    Article  Google Scholar 

  • Zhang, X. M., Yang, L. L., Liu, X. J., et al. (2011). New Medlar cultivars ‘Yanqi’ and ‘Haiqi’. Acta Horticulturae Sinica, 38(1), 197–198. (in Chinese).

    CAS  Google Scholar 

  • Zhang, T., Wang, T., Liu, K. S., et al. (2015). Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses. Agricultural Water Management, 159(1–3), 115–122.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Technologies R&D Program of China (2013BAD05B02) and the Science and Technology Service Network Program of the Chinese Academy of Sciences (KFJ-PTXM-017, KFJ-SW-STS-141-04-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Liu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hussain, T. et al. (2020). Soil Respiration and Photosynthetic Carbon Gain on an Abundant Coastal Land After Plantation of Tamarix chinensis. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics