Skip to main content

Visual Processing in Free Flight

Encyclopedia of Computational Neuroscience

Abstract

With their miniature brains many insect groups are able to control highly aerobatic flight maneuvers and to solve spatial vision tasks, such as avoiding collisions with stationary obstacles as well as moving objects, landing on environmental structures, pursuing rapidly moving animals, or localizing a previously learned inconspicuous goal on the basis of environmental cues. With regard to solving such tasks, these insects outperform man-made autonomous flying systems, especially if computational costs and energy efficiency are taken as benchmarks. To accomplish their extraordinary performance, several insect groups have been shown to actively shape the dynamics of the image flow on their eyes (“optic flow”) by the characteristic way they move when solving behavioral tasks. The neural processing of spatial information is greatly facilitated, for instance, by segregating the rotational from the translational optic flow component by way of a saccadic flight and gaze strategy. Flying insects acquire at least part of their strength as autonomous systems through active interactions with their environment, which lead to adaptive behavior in surroundings of a wide range of complexity. Model simulations and robotic implementations show that the smart biological mechanisms of motion computation and visually guided flight control might be helpful to find technical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Borst A (2009) Drosophila’s view on insect vision. Curr Biol 19(1):R36

    Article  PubMed  CAS  Google Scholar 

  • Borst A (2012) Fly motion vision: from optic flow to visual course control. e-Neuroforum 3(3):59–66

    Article  Google Scholar 

  • Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12:297–306

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Egelhaaf M (1993) Detecting visual motion: theory and models. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 3–27

    Google Scholar 

  • Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A 188:419–437

    Article  CAS  Google Scholar 

  • Borst A, Haag J, Reiff DF (2010) Fly motion vision. Annu Rev Neurosci 33:49–70

    Article  PubMed  CAS  Google Scholar 

  • Collett TS, Collett M (2002) Memory use in insect visual navigation. Nat Rev Neurosci 3:542–552

    Article  PubMed  CAS  Google Scholar 

  • de Ruyter van Steveninck R, Bialek W (1995) Reliability and statistical efficiency of a blowfly movement-sensitive neuron. Phil Trans R Soc B Biol Sci 348:321–340

    Article  Google Scholar 

  • Dewell RB, Gabbiani F (2012) Escape behavior: linking neural computation to action. Curr Biol 22(5):R152

    Article  PubMed  CAS  Google Scholar 

  • Dittmar L (2011) Static and dynamic snapshots for goal localization in insects? Commun Integr Biol 4:17–20

    PubMed Central  PubMed  Google Scholar 

  • Eckert H (1980) Functional properties of the H1-neurone in the third optic ganglion of the blowfly, Phaenicia. J Comp Physiol 135:29–39

    Article  Google Scholar 

  • Egelhaaf M (2006) The neural computation of visual motion. In: Warrant E, Nilsson DE (eds) Invertebrate vision. Cambridge University Press, Cambridge, UK, pp 399–461

    Google Scholar 

  • Egelhaaf M, Borst A (1993) Movement detection in arthropods. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 53–77

    Google Scholar 

  • Egelhaaf M, Kern R (2002) Vision in flying insects. Curr Opin Neurobiol 12:699–706

    Article  PubMed  CAS  Google Scholar 

  • Egelhaaf M, Kern R, Kurtz R, Krapp HG, Kretzberg J, Warzecha AK (2002) Neural encoding of behaviourally relevant motion information in the fly. Trends Neurosci 25:96–102

    Article  PubMed  CAS  Google Scholar 

  • Egelhaaf M, Grewe J, Karmeier K, Kern R, Kurtz R, Warzecha AK (2005) Novel approaches to visual information processing in insects: case studies on neuronal computations in the blowfly. Assisted by Simon SA, Nicolelis MAL. In: Christensen TA (ed) Methods in insect sensory neuroscience. CRC Press LLC (Frontiers in Neuroscience), Boca Raton, pp 185–212

    Google Scholar 

  • Egelhaaf M, Boeddeker N, Kern R, Lindemann JP (2012) Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Front Neural Circ 6:108

    Google Scholar 

  • Floreano D, Zufferey JC, Srinivasan MV, Ellington C (2009) Flying insects and robots. Springer, Heidelberg

    Google Scholar 

  • Fotowat H, Gabbiani F (2011) Collision detection as a model for sensory-motor integration. Annu Rev Neurosci 34(1):1–19

    Article  PubMed  CAS  Google Scholar 

  • Frye MA (2010) Multisensory systems integration for high-performance motor control in flies. Curr Opin Neurobiol 20(3):347–352

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harrison RR, Fotowat H, Chan R, Kier RJ, Olberg R, Leonardo A, Gabbiani F (2011) Wireless neural/EMG telemetry systems for small freely moving animals. IEEE Trans Biomed Circ Syst 5(2):103–111

    Article  CAS  Google Scholar 

  • Hausen K (1984) The lobula-complex of the fly: structure, function and significance in visual behaviour. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York, pp 523–559

    Chapter  Google Scholar 

  • Heeger DJ, Jepson AD (1992) Subspace methods for recovering rigid motion I: algorithm and implementation. Int J Comput Vis 7(2):95–117

    Article  Google Scholar 

  • Hengstenberg R (1993) Multisensory control in insect oculomotor systems. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze, vol 1. Elsevier, Amsterdam, pp 285–298

    Google Scholar 

  • Kern R, Boeddeker N, Dittmar L, Egelhaaf M (2012) Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information. J Exp Biol 215:2501–2514

    Article  PubMed  Google Scholar 

  • Krapp HG (2000) Neuronal matched filters for optic flow processing in flying insects. In: Lappe M (ed) Neuronal processing of optic flow. International review of neurobiology, vol 44. Academic (International Review of Neurobiology), San Diego, pp 93–120

    Chapter  Google Scholar 

  • Kurtz R (2012) Adaptive encoding of motion information in the fly visual system. In: Barth F, Humphrey J, Srinivasan MV (eds) Frontiers in sensing. Springer, Wien, pp 115–128

    Chapter  Google Scholar 

  • Land MF (1997) Visual acuity in insects. Annu Rev Entomol 42:147–177

    Article  PubMed  CAS  Google Scholar 

  • Land MF (1999) Motion and vision: why animals move their eyes. J Comput Physiol A 185:341–352

    Article  CAS  Google Scholar 

  • Longuet-Higgins HC, Prazdny K (1980) The interpretation of a moving retinal image. Proc R Soc Lond Series B Biol Sci 208:385–397

    Article  CAS  Google Scholar 

  • Maimon G (2011) Modulation of visual physiology by behavioral state in monkeys, mice, and flies. Curr Opin Neurobiol 21(4):559–564

    Article  PubMed  CAS  Google Scholar 

  • Nordström K (2012) Neural specializations for small target detection in insects. Curr Opin Neurobiol 22:272–278

    Article  PubMed  CAS  Google Scholar 

  • Olberg RM (2011) Visual control of prey-capture flight in dragonflies. Curr Opin Neurobiol 22(2):267–271

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Sensory communication. M.I.T. Press/Wiley, New York, pp 303–317

    Google Scholar 

  • Srinivasan MV (2011) Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiol Rev 91(2):413–460

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV, Zhang S (2004) Visual motor computations in insects. Annu Rev Neurosci 27:679–696

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV, Zhang S, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the “odometer”. Science 287:851–853

    Article  PubMed  CAS  Google Scholar 

  • Taylor GK, Krapp HG (2008) Sensory systems and flight stability: what do insects measure and why? Adv Insect Physiol Insect Mech Control 34:231–316

    Article  Google Scholar 

  • van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M (2005) Function and coding in the blowfly H1 neuron during naturalistic optic flow. J Neurosci 25:4343–4352

    Article  PubMed  CAS  Google Scholar 

  • Vardy A, Möller R (2005) Biologically plausible visual homing methods based on optical flow techniques. Connect Sci 17(1–2):47–89

    Article  Google Scholar 

  • Warzecha AK, Egelhaaf M (2001) Neuronal encoding of visual motion in real-time. In: Zanker JM, Zeil J (eds) Processing visual motion in the real world: a survey of computational, neural, and ecological constraints. Springer, Berlin, pp 239–277

    Google Scholar 

  • Warzecha AK, Rosner R, Grewe J (2013) Impact and sources of neuronal variability in the fly’s motion vision pathway. J Physiol 107(1–2):26–40

    Google Scholar 

  • Wolf H (2011) Odometry and insect navigation. J Exp Biol 214(10):1629–1641

    Article  PubMed  Google Scholar 

  • Zeil J (2012) Visual homing: an insect perspective. Curr Opin Neurobiol 22:285–293

    Article  PubMed  CAS  Google Scholar 

  • Zeil J, Boeddeker N, Hemmi JM (2008) Vision and the organization of behaviour. Curr Biol 18(8):R320

    Article  PubMed  CAS  Google Scholar 

  • Zeil J, Boeddeker N, Stürzl W (2009) Visual homing in insects and robots. In: Floreano D, Zufferey JC, Srinivasan MV, Ellington CP (eds) Flying insects and robots. Springer, Heidelberg, pp 87–99

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Egelhaaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Egelhaaf, M. (2013). Visual Processing in Free Flight. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_343-15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_343-15

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Visual Processing in Free Flight
    Published:
    25 October 2019

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_343-16

  2. Original

    Visual Processing in Free Flight
    Published:
    04 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_343-15