Skip to main content

Rapid Extraction of PCR-Competent DNA from Recalcitrant Environmental Samples

  • Protocol
  • First Online:
Environmental Microbiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1096))

Abstract

Advances in sequencing technologies have made the investigation of microbial ecology and community dynamics more tractable. The critical first step in such analyses is the efficient and representative recovery of PCR-competent DNA from complex environmental samples. All extraction protocols contain inherent biases, meaning that choice of method involves compromise between various factors, including efficiency, yield, universality, and representative extraction. Here, details are given for a routine method used in our laboratory to extract DNA from soils, sediments, biofilms, roots, and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Sogin ML et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  PubMed  Google Scholar 

  3. Frostegard A et al (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65: 5409–5420

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Krsek M, Wellington EMH (1999) Comparison of different methods for the isolation and purification of total community DNA from soil. J Microbiol Methods 39:1–16

    Article  CAS  PubMed  Google Scholar 

  5. Roose-Amsaleg CL, Garnier-Sillam E, Harry M (2001) Extraction and purification of microbial DNA from soil and sediment samples. Appl Soil Ecol 18:47–60

    Article  Google Scholar 

  6. Feinstein LM, Sul WJ, Blackwood CB (2009) Assessment of bias associated with incomplete extraction of microbial DNA from soil. Appl Environ Microbiol 75:5428–5433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Inceoglu O et al (2010) Effect of DNA extraction method on the apparent microbial diversity of soil. Appl Environ Microbiol 76: 3378–3382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Martin-Laurent F et al (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Robe P et al (2003) Extraction of DNA from soil. Eur J Soil Biol 39:183–190

    Article  CAS  Google Scholar 

  10. Thakuria D et al (2008) Importance of DNA quality in comparative soil microbial community structure analyses. Soil Biol Biochem 40:1390–1403

    Article  CAS  Google Scholar 

  11. Borneman J et al (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62:1935–1943

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Lakay FM, Botha A, Prior BA (2007) Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. J Appl Microbiol 102:265–273

    Article  CAS  PubMed  Google Scholar 

  13. Carrigg C et al (2007) DNA extraction method affects microbial community profiles from soils and sediment. Appl Microbiol Biotechnol 77:955–964

    Article  CAS  PubMed  Google Scholar 

  14. de Lipthay JR et al (2004) Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis. Soil Biol Biochem 36: 1607–1614

    Article  Google Scholar 

  15. Luna GM, Dell’Anno A, Danovaro R (2006) DNA extraction procedure: a critical issue for bacterial diversity assessment in marine sediments. Environ Microbiol 8:308–320

    Article  CAS  PubMed  Google Scholar 

  16. Bürgmann H et al (2001) A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods 45:7–20

    Article  PubMed  Google Scholar 

  17. Petric I et al (2011) Inter-laboratory evaluation of the ISO standard 11063 “Soil quality—method to directly extract DNA from soil samples”. J Microbiol Methods 84:454–460

    Article  CAS  PubMed  Google Scholar 

  18. Yeates C, Gillings MR (1998) Rapid purification of DNA from soil for molecular biodiversity analysis. Lett Appl Microbiol 27:49–53

    Article  CAS  Google Scholar 

  19. Green JL et al (2004) Spatial scaling of microbial eukaryote diversity. Nature 432: 747–750

    Article  CAS  PubMed  Google Scholar 

  20. Stow A et al (2010) Differential antimicrobial activity in response to the entomopathogenic fungus Cordyceps in six Australian bee species. Aust J Entomol 49:145–149

    Article  Google Scholar 

  21. Gillings MR, Holley MP, Selleck M (2006) Molecular identification of species comprising an unusual biofilm from a groundwater treatment plant. Biofilms 3:19–24

    Article  Google Scholar 

  22. Holmes AJ et al (2001) Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ Microbiol 3:256–264

    Article  CAS  PubMed  Google Scholar 

  23. Wilson GS et al (2010) Heterogeneity of surface attached microbial communities from Sydney Harbour, Australia. Marine Genomics 3:99–105

    Article  PubMed  Google Scholar 

  24. Gillings M et al (2008) The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol 190:5095–5100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gillings MR et al (2008) Recovery of diverse genes for class 1 integron-integrases from environmental DNA samples. FEMS Microbiol Lett 287:56–62

    Article  CAS  PubMed  Google Scholar 

  26. Young A et al (2006) Genetic uniformity among international isolates of Leifsonia xyli subsp. xyli, causal agent of ratoon stunting disease of sugarcane (Saccharum interspecific hybrids). Aust Plant Pathol 35:503–511

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gillings, M.R. (2014). Rapid Extraction of PCR-Competent DNA from Recalcitrant Environmental Samples. In: Paulsen, I., Holmes, A. (eds) Environmental Microbiology. Methods in Molecular Biology, vol 1096. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-712-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-712-9_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-711-2

  • Online ISBN: 978-1-62703-712-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics