Skip to main content

Quantitative Imaging Approaches for Small-Molecule Measurements Using FRET Sensors in Plants

  • Protocol
  • First Online:
Plant Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1083))

Abstract

Cellular metabolites and ions can exhibit very specific spatiotemporal dynamics that are very challenging to monitor using extraction-based methods. Genetically encoded Föster resonance energy transfer sensors afford a powerful method of measuring these dynamics in situ and hence are now widely used in order to decode information communicated through the dynamics of cellular metabolites and ions. This methodology involves (1) the development of a suitable sensor, (2) genetic engineering of the sensor for its expression in the tissue of interest, and (3) measurement and characterization of the cellular metabolites and ions using optical imaging. This chapter describes the measurement aspects. We describe the imaging setup, sample preparation from leaf discs and root cells, performance of a perfusion experiment, and quantification of metabolite and ion concentrations from the imaging data. We also describe post-experiment analysis including estimation of sensor efficiency and spectral bleedthrough.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  PubMed  CAS  Google Scholar 

  2. Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM, Vernoux T, Brady SM, Dewitte W, Murray JA, Benfey PN (2010) Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466:128–132

    Article  PubMed  CAS  Google Scholar 

  3. Sun Y, Periasamy A (2010) Additional correction for energy transfer efficiency calculation in filter-based Forster resonance energy transfer microscopy for more accurate results. J Biomed Opt 15:020513

    Article  PubMed  Google Scholar 

  4. Zhao ZX, Zhang W, Stanley BA, Assmann SM (2008) Functional proteomics of Arabidopsis thaliana guard cells uncovers New stomatal signaling pathways. Plant Cell 20:3210–3226

    Article  PubMed  CAS  Google Scholar 

  5. Wan JR, Torres M, Ganapathy A, Thelen J, DaGue BB, Mooney B, Xu D, Stacey G (2005) Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. Mol Plant Microbe In 18:458–467

    Article  CAS  Google Scholar 

  6. Wienkoop S, Zoeller D, Ebert B, Simon-Rosin U, Fisahn J, Glinski M, Weckwerth W (2004) Cell-specific protein profiling in Arabidopsis thaliana trichomes: identification of trichome-located proteins involved in sulfur metabolism and detoxification. Phytochemistry 65:1641–1649

    Article  PubMed  CAS  Google Scholar 

  7. Lapainis T, Rubakhin SS, Sweedler JV (2009) Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Anal Chem 81: 5858–5864

    Article  PubMed  CAS  Google Scholar 

  8. Newman RH, Fosbrink MD, Zhang J (2011) Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 111:3614–3666

    Article  PubMed  CAS  Google Scholar 

  9. Souslova EA, Chudakov DM (2007) Genetically encoded intracellular sensors based on fluorescent proteins. Biochemistry (Mosc) 72:683–697

    Article  CAS  Google Scholar 

  10. Okumoto S (2010) Imaging approach for monitoring cellular metabolites and ions using genetically encoded biosensors. Curr Opin Biotechnol 21:45–54

    Article  PubMed  CAS  Google Scholar 

  11. Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K (2011) FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca(2+) dynamics. Plant J 69(1): 181–192

    Article  PubMed  Google Scholar 

  12. Swanson SJ, Choi WG, Chanoca A, Gilroy S (2011) In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annu Rev Plant Biol 62: 273–297

    Article  PubMed  CAS  Google Scholar 

  13. Hou BH, Takanaga H, Grossmann G, Chen LQ, Qu XQ, Jones AM, Lalonde S, Schweissgut O, Wiechert W, Frommer WB (2011) Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat Protoc 6:1818–1833

    Article  PubMed  CAS  Google Scholar 

  14. Bermejo C, Haerizadeh F, Takanaga H, Chermak D, Frommer WB (2011) Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nat Protoc 6:1806–1817

    Article  PubMed  CAS  Google Scholar 

  15. Grossmann G, Guo WJ, Ehrhardt DW, Frommer WB, Sit RV, Quake SR, Meier M (2011) The RootChip: an integrated microfluidic chip for plant science. Plant Cell 23(12): 4234–4240

    Article  PubMed  CAS  Google Scholar 

  16. Deuschle K, Chaudhuri B, Okumoto S, Lager I, Lalonde S, Frommer WB (2006) Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell 18:2314–2325

    Article  PubMed  CAS  Google Scholar 

  17. Loque D, Ludewig U, Yuan L, von Wiren N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    Article  PubMed  CAS  Google Scholar 

  18. Chen Y, Periasamy A (2006) Intensity range based quantitative FRET data analysis to localize protein molecules in live cell nuclei. J Fluoresc 16:95–104

    Article  PubMed  CAS  Google Scholar 

  19. Palmer AE, Tsien RY (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1:1057–1065

    Article  PubMed  CAS  Google Scholar 

  20. Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1176–1180

    Article  PubMed  CAS  Google Scholar 

  21. Levchenko V, Konrad KR, Dietrich P, Roelfsema MR, Hedrich R (2005) Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Natl Acad Sci U S A 102:4203–4208

    Article  PubMed  CAS  Google Scholar 

  22. Iwano M, Entani T, Shiba H, Kakita M, Nagai T, Mizuno H, Miyawaki A, Shoji T, Kubo K, Isogai A, Takayama S (2009) Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol 150: 1322–1334

    Article  PubMed  CAS  Google Scholar 

  23. Okumoto S, Jones A, Frommer WB (2012) Quantitative imaging with fluorescent biosensors: advanced tools for spatiotemporal analysis of biodynamics in cells. Annu Rev Plant Biol 63:663–706

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Okumoto, S. (2014). Quantitative Imaging Approaches for Small-Molecule Measurements Using FRET Sensors in Plants. In: Sriram, G. (eds) Plant Metabolism. Methods in Molecular Biology, vol 1083. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-661-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-661-0_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-660-3

  • Online ISBN: 978-1-62703-661-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics