Skip to main content

Quantitating Lymphocyte Homeostasis In Vivo in Humans Using Stable Isotope Tracers

  • Protocol
  • First Online:
Immune Homeostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 979))

Abstract

Humans have a remarkable ability to maintain relatively constant lymphocyte numbers across many decades, from puberty to old-age, despite a multitude of infectious and other challenges and a dramatic decline in thymic output. This phenomenon, lymphocyte homeostasis, is achieved by matching the production, death, and phenotype transition rates across a network of varied lymphocyte subpopulations. Understanding this process in humans depends on the ability to measure in vivo rates of lymphocyte production and loss. Such investigations have been greatly facilitated by the advent of stable isotope labeling approaches, which use the rate of incorporation of a tracer into cellular DNA as a marker of cell division. Two labeling approaches are commonly employed, one using deuterium-labeled glucose and the other using deuterium-labeled water, also known as heavy water (2H2O). Here we describe the application of these two labeling techniques for measurement of human in vivo lymphocyte kinetics through the four phases of investigation: labeling, ­sampling, analysis, and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asquith B, Borghans JA, Ganusov VV, Macallan DC (2009) Lymphocyte kinetics in health and disease. Trends Immunol 30:182–189

    Article  PubMed  CAS  Google Scholar 

  2. Busch R, Neese RA, Awada M, Hayes GM, Hellerstein MK (2007) Measurement of cell proliferation by heavy water labeling. Nat Protoc 2:3045–3057

    Article  PubMed  CAS  Google Scholar 

  3. Hellerstein MK (1999) Measurement of T-cell kinetics: recent methodologic advances. Immunol Today 20:438–441

    Article  PubMed  CAS  Google Scholar 

  4. Macallan DC, Fullerton CA, Neese RA, Haddock K, Park S, Hellerstein MK (1998) Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: studies in vitro, in animals and in humans. Proc Natl Acad Sci U S A 95:708–713

    Article  PubMed  CAS  Google Scholar 

  5. Macallan DC, Asquith B, Zhang Y, de Lara CM, Ghattas H, Defoiche J, Beverley PC (2009) Measurement of proliferation and disappearance of rapid turnover cell populations in human studies using deuterium-labelled glucose. Nat Protoc 4:1313–1327

    Article  PubMed  CAS  Google Scholar 

  6. Neese RA, Misell LM, Turner S, Chu A, Kim J, Cesar D, Hoh R, Antelo F, Strawford A, McCune JM, Christiansen M, Hellerstein MK (2002) Measurement in vivo of proliferation rates of slow turnover cells by 2H2O labeling of the deoxyribose moiety of DNA. Proc Natl Acad Sci U S A 99:15345–15350

    Article  PubMed  CAS  Google Scholar 

  7. Vukmanovic-Stejic M, Zhang Y, Akbar AN, Macallan DC (2011) Measurement of proliferation and disappearance of regulatory T cells in human studies using deuterium-labeled glucose. Methods Mol Biol 707:243–261

    Article  PubMed  CAS  Google Scholar 

  8. Hellerstein M (2000) Methods for measuring polymerisation biosynthesis: three general solutions to the problem of the “true precursor”. Diabetes Nutr Metab 13:46–60

    PubMed  CAS  Google Scholar 

  9. Cohen A, Barankiewicz J, Lederman HM, Gelfand EW (1983) Purine and pyrimidine metabolism in human T lymphocytes. Regulation of deoxyribonucleotide metabolism. J Biol Chem 258:12334–12340

    PubMed  CAS  Google Scholar 

  10. Reichard P (1988) Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 57:349–374

    Article  PubMed  CAS  Google Scholar 

  11. Asquith B, Debacq C, Macallan DC, Willems L, Bangham C (2002) Lymphocyte kinetics: the interpretation of labelling data. Trends Immunol 23:596–601

    Article  PubMed  CAS  Google Scholar 

  12. Macallan DC, Asquith B, Irvine A, Wallace D, Worth A, Ghattas H, Zhang Y, Griffin GE, Tough D, Beverley PC (2003) Measurement and modeling of human T cell kinetics. Eur J Immunol 33:2316–2326

    Article  PubMed  CAS  Google Scholar 

  13. Vrisekoop N, den Braber I, de Boer AB, Ruiter AF, Ackermans MT, van der Crabben SN, Schrijver EH, Spierenburg G, Sauerwein HP, Hazenberg MD, De Boer RJ, Miedema F, Borghans JA, Tesselaar K (2008) Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool. Proc Natl Acad Sci U S A 105:6115–6120

    Article  PubMed  CAS  Google Scholar 

  14. Borghans JA, De Boer RJ (2007) Quantification of T-cell dynamics: from telomeres to DNA labeling. Immunol Rev 216:35–47

    PubMed  Google Scholar 

  15. Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, Rustin MH, Taams LS, Beverley PC, Macallan DC, Akbar AN (2006) Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116:2423–2433

    Article  PubMed  CAS  Google Scholar 

  16. Macallan DC, Wallace DL, Irvine A, Asquith B, Worth A, Ghattas H, Zhang Y, Griffin GE, Tough DF, Beverley PC (2003) Rapid turnover of T cells in acute infectious mononucleosis. Eur J Immunol 33:2655–2665

    Article  PubMed  CAS  Google Scholar 

  17. Macallan DC, Wallace D, Zhang Y, De Lara C, Worth AT, Ghattas H, Griffin GE, Beverley PC, Tough DF (2004) Rapid turnover of effector-memory CD4(+) T cells in healthy humans. J Exp Med 200:255–260

    Article  PubMed  CAS  Google Scholar 

  18. Wallace DL, Zhang Y, Ghattas H, Worth A, Irvine A, Bennett AR, Griffin GE, Beverley PC, Tough DF, Macallan DC (2004) Direct measurement of T cell subset kinetics in vivo in elderly men and women. J Immunol 173:1787–1794

    PubMed  CAS  Google Scholar 

  19. Macallan DC, Wallace DL, Zhang Y, Ghattas H, Asquith B, De Lara C, Worth A, Panayiotakopoulos G, Griffin GE, Tough DF, Beverley PC (2005) B cell kinetics in humans: rapid turnover of peripheral blood memory cells. Blood 105:3633–3640

    Article  PubMed  CAS  Google Scholar 

  20. Defoiche J, Debacq C, Asquith B, Zhang Y, Burny A, Bron D, Lagneaux L, Macallan DC, Willems L (2008) Reduction of B cell turnover in chronic lymphocytic leukaemia. Br J Haematol 143:240–247

    Article  PubMed  Google Scholar 

  21. Hellerstein M, Hanley MB, Cesar D, Siler S, Papageorgopoulos C, Wieder E, Schmidt D, Hoh R, Neese R, Macallan D, Deeks S, McCune JM (1999) Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat Med 5:83–89

    Article  PubMed  CAS  Google Scholar 

  22. Hellerstein MK, Hoh RA, Hanley MB, Cesar D, Lee D, Neese RA, McCune JM (2003) Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J Clin Invest 112:956–966

    PubMed  CAS  Google Scholar 

  23. McCune JM, Hanley MB, Cesar D, Halvorsen R, Hoh R, Schmidt D, Wieder E, Deeks S, Siler S, Neese R, Hellerstein M (2000) Factors influencing T-cell turnover in HIV-1-seropositive patients. J Clin Invest 105:R1–R8

    Article  PubMed  CAS  Google Scholar 

  24. Kovacs JA, Lempicki RA, Sidorov IA, Adelsberger JW, Sereti I, Sachau W, Kelly G, Metcalf JA, Davey RT Jr, Falloon J, Polis MA, Tavel J, Stevens R, Lambert L, Hosack DA, Bosche M, Issaq HJ, Fox SD, Leitman S, Baseler MW, Masur H, Di MM, Dimitrov DS, Lane HC (2005) Induction of prolonged survival of CD4+ T lymphocytes by intermittent IL-2 therapy in HIV-infected patients. J Clin Invest 115:2139–2148

    Article  PubMed  CAS  Google Scholar 

  25. Read SW, Lempicki RA, Di MM, Srinivasula S, Burke R, Sachau W, Bosche M, Adelsberger JW, Sereti I, Davey RT Jr, Tavel JA, Huang CY, Issaq HJ, Fox SD, Lane HC, Kovacs JA (2008) CD4 T cell survival after intermittent interleukin-2 therapy is predictive of an increase in the CD4 T cell count of HIV-infected patients. J Infect Dis 198:843–850

    Article  PubMed  CAS  Google Scholar 

  26. Mohri H, Perelson AS, Tung K, Ribeiro RM, Ramratnam B, Markowitz M, Kost R, Hurley A, Weinberger L, Cesar D, Hellerstein MK, Ho DD (2001) Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J Exp Med 194:1277–1287

    Article  PubMed  CAS  Google Scholar 

  27. Brandt T (1990) Positional and positioning vertigo and nystagmus. J Neurol Sci 95:3–28

    Article  PubMed  CAS  Google Scholar 

  28. Van Gent R, Kater AP, Otto SA, Jaspers A, Borghans JA, Vrisekoop N, Ackermans MA, Ruiter AF, Wittebol S, Eldering E, van Oers MH, Tesselaar K, Kersten MJ, Miedema F (2008) In vivo dynamics of stable chronic lymphocytic leukemia inversely correlate with somatic hypermutation levels and suggest no major leukemic turnover in bone marrow. Cancer Res 68:10137–10144

    Article  PubMed  Google Scholar 

  29. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D, Murphy EJ, Koduru P, Ferrarini M, Zupo S, Cutrona G, Damle RN, Wasil T, Rai KR, Hellerstein MK, Chiorazzi N (2005) In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 115:755–764

    PubMed  CAS  Google Scholar 

  30. Fox SD, Lempicki RA, Hosack DA, Baseler MW, Kovacs JA, Lane HC, Veenstra TD, Issaq HJ (2003) A comparison of microLC/electrospray ionization-MS and GC/MS for the measurement of stable isotope enrichment from a (2H2)-glucose metabolic probe in T-cell genomic DNA. Anal Chem 75:6517–6522

    Article  PubMed  CAS  Google Scholar 

  31. Voogt JN, Awada M, Murphy EJ, Hayes GM, Busch R, Hellerstein MK (2007) Measurement of very low rates of cell proliferation by heavy water labeling of DNA and gas chromatography/pyrolysis/isotope ratio-mass spectrometric analysis. Nat Protoc 2:3058–3062

    Article  PubMed  CAS  Google Scholar 

  32. Neese RA, Siler SQ, Cesar D, Antelo F, Lee D, Misell L, Patel K, Tehrani S, Shah P, Hellerstein MK (2001) Advances in the stable isotope-mass spectrometric measurement of DNA synthesis and cell proliferation. Anal Biochem 298:189–195

    Article  PubMed  CAS  Google Scholar 

  33. Van Kreel BK, van der Vegt F, Meers M, Wagenmakers T, Westerterp K, Coward A (1996) Determination of total body water by a simple and rapid mass spectrometric method. J Mass Spectrom 31:108–111

    Article  PubMed  Google Scholar 

  34. Stevens RA, Lempicki RA, Natarajan V, Higgins J, Adelsberger JW, Metcalf JA (2006) General immunologic evaluation of patients with human immunodeficiency virus infection. In: Detrick B, Hamilton RG, Folds JD (eds) Manual of molecular and clinical laboratory immunology. ASM Press, Washington, DC, pp 848–861

    Google Scholar 

  35. Asquith B, Zhang Y, Mosley AJ, de Lara CM, Wallace DL, Worth A, Kaftantzi L, Meekings K, Griffin GE, Tanaka Y, Tough DF, Beverley PC, Taylor GP, Macallan DC, Bangham CR (2007) In vivo T lymphocyte dynamics in humans and the impact of human T-lymphotropic virus 1 infection. Proc Natl Acad Sci U S A 104:8035–8040

    Article  PubMed  CAS  Google Scholar 

  36. Ganusov VV, Borghans JA, De Boer RJ (2010) Explicit kinetic heterogeneity: mathematical models for interpretation of deuterium labeling of heterogeneous cell populations. PLoS Comput Biol 6:e1000666

    Article  PubMed  Google Scholar 

  37. Macallan DC, Zhang Y, De Lara C, Worth A, Beverley PC (2011) CD4+ T cell turnover is related to chemokine receptor expression and HIV viral co-receptor tropism. Proceedings of 17th conference on retroviruses and opportunistic infections abstract #270.

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Medical Research Council (UK), the Wellcome Trust, the Charitable Trustees of St George’s Hospital, London, and the Netherlands Organization for Scientific Research (NWO, grants 917.96.350 and 836.07.002) during the execution of studies included in this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek C. Macallan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Westera, L., Zhang, Y., Tesselaar, K., Borghans, J.A.M., Macallan, D.C. (2013). Quantitating Lymphocyte Homeostasis In Vivo in Humans Using Stable Isotope Tracers. In: Snow, A., Lenardo, M. (eds) Immune Homeostasis. Methods in Molecular Biology, vol 979. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-290-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-290-2_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-289-6

  • Online ISBN: 978-1-62703-290-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics