Skip to main content

Electrostatics of Hydrogen Exchange for Analyzing Protein Flexibility

  • Protocol
  • First Online:
Protein NMR Techniques

Abstract

Electrostatic interactions at the protein–aqueous interface modulate the reactivity of solvent-exposed backbone amides by a factor of at least a billion fold. The brief (∼10 ps) lifetime of the peptide anion formed during the hydroxide-catalyzed exchange reaction helps enable the experimental rates to be robustly predictable by continuum dielectric methods. Since this ability to predict the structural dependence of exchange reactivity also applies to the protein amide hydrogens that are only rarely exposed to the bulk solvent phase, electrostatic analysis of the experimental exchange rates provides an effective assessment of whether a given model ensemble is consistent with the properly weighted Boltzmann conformational distribution of the protein native state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berger, A., and Linderstrøm-Lang, K. (1957) Deuterium exchange of poly-DL-alanine in aqueous solution. Arch. Biochem. Biophys. 69, 106–118.

    Article  PubMed  CAS  Google Scholar 

  2. Hvidt, A., and Nielsen, S.O. (1966) Hydrogen exchange in proteins. Advances in Protein Chem. 21, 287–386.

    Article  CAS  Google Scholar 

  3. Bai, Y.W., Milne, J.S., Mayne, L., and Englander, S.W. (1994) Protein stability parameters measured by hydrogen exchange. Proteins: Struct., Funct., Genet. 20, 4–14.

    CAS  Google Scholar 

  4. Huyghues-Despointes, B.M.P., Scholtz, J.M., and Pace, C.N. (1999) Protein conformational stabilities can be determined from hydrogen exchange rates. Nat. Struct. Biol. 6, 910–912.

    Article  PubMed  CAS  Google Scholar 

  5. Li, R., and Woodward, C. (1999) The hydrogen exchange core and protein folding. Prot. Sci. 8, 1571–1591.

    Article  CAS  Google Scholar 

  6. Hilser, V.J., and Freire, E. (1996) Structure-based calculations of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors. J. Mol. Biol. 262, 756–772.

    CAS  Google Scholar 

  7. Wallqvist, A., Smythers, G.W., and Covell, D.G. (1997) Identification of cooperative folding units in a set of native proteins. Prot. Sci. 6, 1627–1642.

    Article  CAS  Google Scholar 

  8. Bahar, I., Wallqvist, A., Covell, D.G., and Jernigan, R.L. (1998) Correlation between native-state hydrogen exchange and cooperative residue fluctuations from a simple model. Biochemistry 37, 1067–1075.

    Article  PubMed  CAS  Google Scholar 

  9. Sheinerman, F.B., and Brooks, C.L. (1998) Molecular picture of folding of a small a/ß protein. Proc. Natl. Acad. Sci USA 95, 1562–1567.

    Google Scholar 

  10. Garcia, A.E., and Hummer, G. (1999) Conformational dynamics of cytochrome c: Correlation to hydrogen exchange. Prot. Struct. Funct. Genet. 36, 175–191.

    Article  CAS  Google Scholar 

  11. Dixon, R.D.S., Chen, Y., Ding, F., Khare, S.D., Prutzman, K.C., Schaller, M.D., Campbell, S.L., and Dokholyan, N.V. (2004) New insights into FAK signaling and localization based on detection of a FAT domain folding intermediate. Structure 12, 2161–2171.

    Article  PubMed  CAS  Google Scholar 

  12. Livesay, D.R., Dallakyan, S., Wood, G.G., and Jacobs, D.J. (2004) A flexible approach for understanding protein stability. FEBS Lett. 576, 468–476.

    Article  PubMed  CAS  Google Scholar 

  13. Freire, E. (1999) The propagation of binding interactions to remote sites in proteins: Analysis of the binding of the monoclonal antibody D1.3 to lysozyme. Proc. Natl. Acad. Sci. USA 96, 10118–10122.

    Google Scholar 

  14. Pan, H., Lee, J.C., and Hilser, V.J. (2000) Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble. Proc. Natl. Acad. Sci USA 97, 12020–12025.

    Article  PubMed  CAS  Google Scholar 

  15. Wrabl, J.O., Larson, S.A., and Hilser, V.J. (2001) Thermodynamic propensities of amino acids in the native state ensemble: Implications for fold recognition. Prot. Sci. 10, 1032–1045.

    Article  CAS  Google Scholar 

  16. Wrabl, J.O., Larson, S.A., and Hilser, V.J. (2002) Thermodynamic environments in proteins: Fundamental determinants of fold specificity. Prot. Sci. 11, 1945–1957.

    Article  CAS  Google Scholar 

  17. Babu, C.R., Hilser, V.J., and Wand, A.J. (2004) Direct access to the cooperative substructure of proteins and the protein ensemble via cold denaturation. Nat. Struct. Mol. Biol. 11, 352–357.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, S.W., Gu, J., Larson, S.A., Whitten, S.T., and Hilser, V.J. (2008) Denatured-state energy landscapes of a protein structural database reveal the energetic determinants of a framework model for folding. J. Mol. Biol. 381, 1184–1201.

    Article  PubMed  CAS  Google Scholar 

  19. Cremades, N., Sancho, J., and Freire, E. (2006) The native-state ensemble of proteins provides clues for folding, misfolding and function. Trends Biochem. Sci. 31, 494–496.

    Article  PubMed  CAS  Google Scholar 

  20. LeMaster, D.M., Anderson, J.S., and Hernández, G. (2009) Peptide conformer acidity analysis of protein flexibility monitored by hydrogen exchange. Biochemistry 48, 9256–9265.

    Article  PubMed  CAS  Google Scholar 

  21. Anderson, J.S., Hernandez, G., and LeMaster, D.M. (2010) Conformational Electrostatics in the Stabilization of the Peptide Anion. Curr. Org. Chem. 14, 162–180.

    Article  CAS  Google Scholar 

  22. Anderson, J.S., Hernández, G., and LeMaster, D.M. (2008) A billion-fold range in acidity for the solvent-exposed amides of Pyrococcus furiosus rubredoxin. Biochemistry 47, 6178–6188.

    Article  PubMed  CAS  Google Scholar 

  23. Bai, Y.W., Milne, J.S., Mayne, L., and Englander, S.W. (1993) Primary structure effects on peptide group hydrogen-exchange. Proteins: Struct., Funct., Genet. 17, 75–86.

    CAS  Google Scholar 

  24. Hernández, G., Anderson, J.S., and LeMaster, D.M. (2008) Electrostatic stabilization and general base catalysis in the active site of the human protein disulfide isomerase a domain monitored by hydrogen exchange. ChemBioChem 9, 768–778.

    Article  PubMed  CAS  Google Scholar 

  25. Radford, S.E., Buck, M., Topping, K.D., Dobson, C.M., and Evans, P.A. (1992) Hydrogen exchange in native and denatured states of hen egg-white lysozyme. Proteins 14, 237–248.

    Article  PubMed  CAS  Google Scholar 

  26. Hollien, J., and Marqusee, S. (2002) Comparison of the folding processes of T. thermophilus and E. coli Ribonucleases H. J. Mol. Biol. 316, 327–340.

    Article  PubMed  CAS  Google Scholar 

  27. Bau, R., Rees, D.C., Kurtz-Jr., D.M., Scott, R.A., Huang, H.S., Adams, M.W.W., and Eidsness, M.K. (1998) Crystal-structure of rubredoxin from Pyrococcus furiosus at 0.95 Angstrom resolution, and the structures of N-terminal methionine and formylmethionine variants of Pf Rd. Contributions of N-terminal interactions to thermostability. J. Biol. Inorg. Chem. 3, 484–493.

    Google Scholar 

  28. LeMaster, D.M., Tang, J., Paredes, D.I., and Hernández, G. (2005) Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: Spatial propagation of differential flexibility in rubredoxin hybrids. Proteins 61, 608–616.

    Article  PubMed  CAS  Google Scholar 

  29. Lee, B., and Richards, F.M. (1971) The Interpretation of Protein Structures: Estimation of Static Accessibility. J. Mol. Biol. 55, 379–400.

    Article  PubMed  CAS  Google Scholar 

  30. Hiller, R., Zhou, Z.H., Adams, M.W.W., and Englander, S.W. (1997) Stability and dynamics in a hyperthermophilic protein with melting temperature close to 200 degrees C. Proc. Natl. Acad. Sci. USA 94, 11329–11332.

    Article  PubMed  CAS  Google Scholar 

  31. Richter, B., Gsponer, J., Varnai, P., Salvatella, X., and Vendruscolo, M. (2007) The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native state ensembles of proteins. J. Biomol. NMR 37, 117–135.

    Article  PubMed  CAS  Google Scholar 

  32. Lange, O.F., Lakomek, N.A., Fares, C., Schroder, G.F., Walter, K.F.A., Becker, S., Meiler, J., Grubmuller, H., Griesinger, C., and deGroot, B.L. (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320, 1471–1475.

    Article  PubMed  CAS  Google Scholar 

  33. Hernández, G., Anderson, J.S., and LeMaster, D.M. (2010) Assessing the native state conformational distribution of ubiquitin by peptide acidity. Biophys. Chem., doi: 10.1016/j.bpc.2010.10.006.

  34. Anderson, J.S., Hernández, G., and LeMaster, D.M. (2009) Backbone conformational dependence of peptide acidity. Biophys. Chem. 141, 124–130.

    Article  PubMed  CAS  Google Scholar 

  35. Anderson, J.S., Hernandez, G., and LeMaster, D.M. (2010) Sidechain conformational dependence of hydrogen exchange in model peptides. Biophys. Chem. 151, 61–70.

    Article  PubMed  CAS  Google Scholar 

  36. Kim, P.S., and Baldwin, R.L. (1982) Influence of charge on the rate of amide proton exchange. Biochemistry 21, 1–5.

    Article  PubMed  CAS  Google Scholar 

  37. Tüchsen, E., and Woodward, C. (1985) Hydrogen kinetics of peptide amide protons at the bovine pancreatic trypsin inhibitor protein-solvent interface. J. Mol. Biol. 185, 405–419.

    Article  PubMed  Google Scholar 

  38. Delepierre, M., Dobson, C.M., Karplus, M., Poulsen, F.M., States, D.J., and Wedin, R.E. (1987) Electrostatic effects and hydrogen exchange behavior in proteins. The pH dependence of exchange rates in lysozyme. J. Mol. Biol. 197, 111–122.

    CAS  Google Scholar 

  39. Dempsey, C.E. (1995) Hydrogen bond stabilities in the isolated alamethicin helix: pH-dependent amide exchange measurements in methanol. J. Am. Chem. Soc. 117, 7526–7534.

    Article  CAS  Google Scholar 

  40. Forsyth, W.R., and Robertson, A.D. (1996) Intramolecular electrostatic interactions accelerate hydrogen exchange in diketopiperazine relative to 2-piperidone. J. Am. Chem. Soc. 118, 2694–2698.

    Article  CAS  Google Scholar 

  41. Fogolari, F., Esposito, G., Viglino, P., Briggs, J.M., and McCammon, J.A. (1998) pKa shift effects on backbone amide base-catalyzed hydrogen exchange rates in peptides. J. Am. Chem. Soc. 120, 3735–3738.

    Article  CAS  Google Scholar 

  42. Matthew, J.B., and Richards, F.M. (1983) The pH dependence of hydrogen exchange in proteins. J. Biol. Chem. 258, 3039–3044.

    PubMed  CAS  Google Scholar 

  43. Eigen, M. (1964) Proton transfer, acid-base catalysis, and enzymatic hydrolysis. (I) Elementary processes. Angew. Chem. Int. Ed. 3, 1–19.

    Article  Google Scholar 

  44. Molday, R.S., and Kallen, R.G. (1972) Substituent effects on amide hydrogen exchange rates in aqueous solution. J. Am. Chem. Soc. 94, 6739–6745.

    Article  CAS  Google Scholar 

  45. Wang, W.H., and Cheng, C.C. (1994) General base catalyzed proton exchange in amides. Bull. Chem. Soc. Jpn. 67, 1054–1057.

    Article  CAS  Google Scholar 

  46. LeMaster, D.M., Anderson, J.S., and Hernández, G. (2007) Spatial distribution of dielectric shielding in the interior of Pyrococcus furiosus rubredoxin as sampled in the subnanosecond timeframe by hydrogen exchange. Biophys. Chem. 129, 43–48.

    Article  PubMed  CAS  Google Scholar 

  47. Hernández, G., Anderson, J.S., and LeMaster, D.M. (2009) Polarization and polarizability assessed by protein amide acidity. Biochemistry 48, 6482–6494.

    Article  PubMed  CAS  Google Scholar 

  48. Luz, Z., and Meiboom, S. (1964) The activation energies of proton transfer reactions in water. J. Am. Chem. Soc. 86, 4768–4769.

    Article  CAS  Google Scholar 

  49. Tolbert, L.M., and Solntsev, K.M. (2002) Excited-state proton transfer: From constrained systems to “Super” photoacids to superfast proton transfer. Acc. Chem. Res. 35, 19–27.

    Article  PubMed  CAS  Google Scholar 

  50. Leiderman, P., Genosar, L., and Huppert, D. (2005) Excited-state proton transfer: Indication of three steps in the dissociation and recombination process. J. Phys. Chem A 109, 5965–5977.

    Article  PubMed  CAS  Google Scholar 

  51. Ellison, W.J., Lamkaouchi, K., and Moreau, J.M. (1996) Water: A dielectric reference. J. Molec. Liquids 68, 171–279.

    Article  CAS  Google Scholar 

  52. Marcus, R.A. (1964) Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196.

    Article  CAS  Google Scholar 

  53. Schaefer, M., and Karplus, M. (1996) A comprehensive analytical treatment of continuum electrostatics. J. Phys. Chem. 100, 1578–1599.

    Article  CAS  Google Scholar 

  54. Richards, F.M. (1974) The interpretation of protein structures: Total volume, group volume distributions and packing density. J. Mol. Biol. 82, 1–14.

    Article  PubMed  CAS  Google Scholar 

  55. Tsai, J., Taylor, R., Chothia, C., and Gerstein, M. (1999) The packing density in proteins: Standard radii and volumes. J. Mol. Biol. 290, 253–266.

    Article  PubMed  CAS  Google Scholar 

  56. Mertz, E.L., and Krishtalik, L.I. (2000) Low dielectric response in enzyme active site. Proc. Natl. Acad. Sci. USA 97, 2081–2086.

    Article  PubMed  CAS  Google Scholar 

  57. Hawranek, J.P., Wrzeszcz, W., Muszyñski, A.S., and Pajdowska, M. (2002) Infrared dispersion of liquid triethylamine. J. Non-Crystal. Solids 305, 62–70.

    Article  CAS  Google Scholar 

  58. LeMaster, D.M., Anderson, J.S., and Hernández, G. (2006) Role of native-state structure in rubredoxin native-state hydrogen exchange. Biochemistry 45, 9956–9963.

    Article  PubMed  CAS  Google Scholar 

  59. Antosiewicz, J., McCammon, J.A., and Gilson, M.K. (1994) Prediction of pH dependent properties of proteins. J. Mol. Biol. 238, 415–436.

    Article  PubMed  CAS  Google Scholar 

  60. Antosiewicz, J., McCammon, J.A., and Gilson, M.K. (1996) The determinants of pKas in proteins. Biochemistry 35, 7819–7833.

    Article  PubMed  CAS  Google Scholar 

  61. Demchuk, E., and Wade, R.C. (1996) Improving the continuum dielectric approach to calculating pKa’s of ionizable groups in proteins. J. Phys. Chem. 100, 17373–17387.

    Article  CAS  Google Scholar 

  62. Georgescu, R.E., Alexov, E.G., and Gunner, M.R. (2002) Combining conformational ­flexibility and continuum electrostatics for ­calculating pKas in proteins. Biophys. J. 83, 1731–1748.

    Article  PubMed  CAS  Google Scholar 

  63. Wisz, M.S., and Hellinga, H.W. (2003) An empirical model for electrostatic interactions in proteins incorporating multiple geometry-dependent dielectric constants. Proteins 51, 360–377.

    Article  PubMed  CAS  Google Scholar 

  64. Song, Y., Mao, J., and Gunner, M.R. (2009) MCCE2: Improving protein pKa calculations with extensive side chain rotamer sampling. J. Comput. Chem. 30, 2231–2247.

    PubMed  CAS  Google Scholar 

  65. Simonson, T., and Perahia, D. (1995) Internal and interfacial dielectric properties of cytochrome c from molecular dynamics in aqueous solution. Proc. Natl. Acad. Sci. USA 92, 1082–1086.

    Article  PubMed  CAS  Google Scholar 

  66. Harms, M.J., Schlessman, J.L., Chimenti, M.S., Sue, G.R., Damjanovic, A., and García-Moreno, B.E. (2008) A buried lysine that titrates with a normal pKa: Role of conformational flexibility at the protein-water interface as a determinant of pKa values, Prot. Sci. 17, 833–845.

    Article  CAS  Google Scholar 

  67. Bordwell, F.G., W. J. Boyle, J., and Yee, K.C. (1970) Equilibrium and kinetic acidities of nitroalkanes and their relationship to transition state structures. J. Am. Chem. Soc. 92, 5926–5932.

    Google Scholar 

  68. Bernasconi, C.F. (1987) Intrinsic barriers of reactions and the principle of nonperfect synchronization. Acc. Chem. Res. 20, 301–308.

    Article  CAS  Google Scholar 

  69. Costentin, C., and Saveant, J.M. (2004) Why are proton transfers at carbon slow? Self-exchange reactions. J. Am. Chem. Soc. 126, 14787–14795.

    Article  PubMed  CAS  Google Scholar 

  70. Hwang, T.L., Mori, S., Shaka, A.J., and vanZijl, P.C.M. (1997) Application of Phase-Modulated CLEAN Chemical EXchange Spectroscopy (CLEANEX-PM) to detect water-protein proton exchange and intermolecular NOEs. J. Am. Chem. Soc. 119, 6203–6204.

    Article  CAS  Google Scholar 

  71. Hwang, T.L., vanZijl, P.C.M., and Mori, S. (1998) Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a fast-HSQC (FHSQC) detection scheme. J. Biomol. NMR 11, 221–226.

    Article  PubMed  CAS  Google Scholar 

  72. Hernández, G., and LeMaster, D.M. (2003) Relaxation compensation in chemical exchange measurements for the quantitation of amide hydrogen exchange in larger proteins. Magn. Reson. Chem. 41, 699–702.

    Article  CAS  Google Scholar 

  73. Griesinger, C., and Ernst, R.R. (1987) Frequency offset effects and their elimination in NMR rotating-frame cross-relaxation spectroscopy. J. Magn. Reson. 75, 261–271.

    CAS  Google Scholar 

  74. Chevelkov, V., Xue, Y., Rao, D.K., Forman-Kay, J.D., and Skrynnikov, N.R. (2010) N-15(H/D)-SOLEXSY experiment for accurate measurement of amide solvent exchange rates: application to denatured drkN SH3. J. Biomolec. NMR 46, 227–244.

    Article  CAS  Google Scholar 

  75. Makhatadze, G.I., Clore, G.M., and Gronenborn, A.M. (1995) Solvent isotope effect and protein stability. Nat. Struct. Biol. 2, 852–855.

    Article  PubMed  CAS  Google Scholar 

  76. Connelly, G.P., Bai, Y.W., Jeng, M.F., and Englander, S.W. (1993) Isotope effects in peptide group hydrogen-exchange. Proteins: Struct., Funct., Genet. 17, 87–92.

    CAS  Google Scholar 

  77. Sivaraman, T., Arrington, C.B., and Robertson, A.D. (2001) Kinetics of unfolding and folding from amide hydrogen exchange in native ubiquitin. Nat. Struct. Biol. 8, 331–333.

    Article  PubMed  CAS  Google Scholar 

  78. Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A., and Honig, B. (2002) Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects. J. Comput. Chem. 23, 128–137.

    Article  PubMed  CAS  Google Scholar 

  79. MacKerell.Jr., A.D., Bashford, D., Bellott, M., Dunbrack.Jr., R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher-III, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616.

    Google Scholar 

  80. Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J. (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236.

    Article  CAS  Google Scholar 

  81. Cheatham, T.E., Cieplak, P., and Kollman, P.A. (1999) A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J. Biomolec. Struct. Dynamics 16, 845–862.

    CAS  Google Scholar 

  82. Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G.M., Zhang, W., Yang, R., Cieplak, P., Lou, R., Lee, T., Caldwell, J., Wang, J.M., and Kollman, P. (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comp. Chem. 24, 1999–2012.

    Article  CAS  Google Scholar 

  83. Bayly, C.I., Cieplak, P., Cornell, W.D., and Kollman, P.A. (1993) A well behaved electrostatic potential-based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 97, 10269–10280.

    Article  CAS  Google Scholar 

  84. Becke, A.D. (1993) Density-functional thermochemistry III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652.

    CAS  Google Scholar 

  85. You, T.J., and Bashford, D. (1995) Conformation and hydrogen ion titration of proteins: A continuum electrostatic model with conformational flexibility. Biophys. J. 69, 1721–1733.

    Article  PubMed  CAS  Google Scholar 

  86. vanVlijmen, H.W.T., Schaefer, M., and Karplus, M. (1998) Improving the accuracy of protein pKa calculations: Conformational averaging versus the average structure. Proteins 33, 145–158.

    Article  CAS  Google Scholar 

  87. deGroot, B.L., vanAalten, D.M.F., Scheek, R.M., Amadei, A., Vriend, G., and Berendsen, H.J.C. (1997) Prediction of protein conformational freedom from distance constraints. Proteins 29, 240–251.

    Article  CAS  Google Scholar 

  88. Cornilescu, G., Marquardt, J.L., Ottiger, M., and Bax, A. (1998) Validation of Protein Structure from Anisotropic Carbonyl Chemical Shifts in a Dilute Liquid Crystalline Phase. J. Am. Chem. Soc. 120, 6836–6837.

    Article  CAS  Google Scholar 

  89. Boehr, D.D., Nussinov, R., and Wright, P.E. (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nature Chem. Biol. 5, 789–796.

    Article  CAS  Google Scholar 

  90. Mittermaier, A.K., and Kay, L.E. (2009) Observing biological dynamics at atomic resolution using NMR. Trends Biochem. Sci. 34, 601–611.

    Article  PubMed  CAS  Google Scholar 

  91. Dikic, I., Wakatsuki, S., and Walters, K.J. (2009) Ubiquitin-binding domains - from structures to functions. Nature Rev. Molec. Cell Biol. 10, 659–671.

    Article  CAS  Google Scholar 

  92. Tjandra, N., Feller, S.E., Pastor, R.W., and Bax, A. (1995) Rotational diffusion anisotropy of human ubiquitin from 15 N NMR relaxation. J. Am. Chem. Soc. 117, 12562–12566.

    Article  CAS  Google Scholar 

  93. Sheinblatt, M. (1970) Determination of an acidity scale for peptide hydrogens from nuclear magnetic resonance kinetic studies. J. Am. Chem. Soc. 92, 2505–2509.

    Article  PubMed  CAS  Google Scholar 

  94. Avbelj, F., and Baldwin, R.L. (2004) Origin of the neighboring residue effect on peptide backbone conformation. Proc. Natl. Acad. Sci. USA 101, 10967–10972.

    Article  PubMed  CAS  Google Scholar 

  95. Makowska, J., Rodziewicz-Motowid³o, S., Bagiñska, K., Vila, J.A., Liwo, A., Chmurzyñski, L., and Scheraga, H.A. (2006) Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins. Proc. Natl. Acad. Sci. USA 103, 1744–1749.

    Google Scholar 

  96. Chen, K., Liu, Z., Zhou, C., Bracken, W.C., and Kallenbach, N.R. (2007) Spin relaxation enhancement confirms dominance of extended conformations in short alanine peptides. Angew. Chem. Int. Ed. 46, 9036–9039.

    Article  CAS  Google Scholar 

  97. Graf, J., Nguyen, P.H., Stock, G., and Schwalbe, H. (2007) Structure and dynamics of the homologous series of alanine peptides: A joint molecular dynamics/NMR study. J. Am. Chem. Soc. 129, 1179–1189.

    Article  PubMed  CAS  Google Scholar 

  98. Wickstrom, L., Okur, A., and Simmerling, C. (2009) Evaluating the Performance of the ff99SB Force Field Based on NMR Scalar Coupling Data. Biophys. J. 97, 853–856.

    Article  PubMed  CAS  Google Scholar 

  99. Pizzanelli, S., Forte, C., Monti, S., Zandomeneghi, G., Hagarman, A., Measey, T.J., and Schweitzer-Stenner, R. (2010) Conformations of Phenylalanine in the Tripeptides AFA and GFG Probed by Combining MD Simulations with NMR, FTIR, Polarized Raman, and VCD Spectroscopy. J. Phys. Chem B 114, 3965–3978.

    Article  PubMed  CAS  Google Scholar 

  100. Tsai, M., Xu, Y.J., and Dannenberg, J.J. (2009) Ramachandran Revisited. DFT Energy Surfaces of Diastereomeric Trialanine Peptides in the Gas Phase and Aqueous Solution. J. Phys. Chem B 113, 309–318.

    CAS  Google Scholar 

  101. Fitzkee, N.C., Fleming, P.J., and Rose, G.D. (2005) The Protein Coil Library: A structural database of nonhelix, nonstrand fragments derived from the PDB. Prot. Struct. Funct. Bioinform. 58, 852–854.

    Article  CAS  Google Scholar 

  102. Avbelj, F., and Baldwin, R.L. (2006) Limited validity of group additivity for the folding energetics of the peptide group. Prot. Struct. Funct. Bioinform. 63, 283–289.

    Article  CAS  Google Scholar 

  103. Flory, P.J. Statistical mechanics of chain molecules, (Wiley Interscience, New York, 1969).

    Google Scholar 

  104. Penkett, C.J., Redfield, C., Dodd, I., Hubbard, J., McBay, D.L., Mossakowska, D.E., Smith, R.A.G., Dobson, C.M., and Smith, L.J. (1997) NMR analysis of main-chain conformational preferences in an unfolded fibronectin-binding protein. J. Mol. Biol. 274, 152–159.

    Article  PubMed  CAS  Google Scholar 

  105. Keskin, O., Yuret, D., Gursoy, A., Turkay, M., and Erman, B. (2004) Relationships between amino acid sequences and backbone torsion angle preferences. Prot. Struct. Funct. Bioinform. 55, 992–998.

    Article  CAS  Google Scholar 

  106. Jha, A.K., Colubri, A., Zaman, M.H., Koide, S., Sosnick, T.R., and Freed, K.F. (2005) Helix, sheet, and polyproline II frequencies and strong nearest neighbor effects in a restricted coil library. Biochemistry 44, 9691–9702.

    Article  PubMed  CAS  Google Scholar 

  107. LeMaster, D.M. (1999) NMR relaxation order parameter analysis of the dynamics of protein sidechains. J. Am. Chem. Soc. 121, 1726–1742.

    Article  CAS  Google Scholar 

  108. Skrynnikov, N.R., Millet, O., and Kay, L.E. (2002) Deuterium spin probes of side-chain dynamics in proteins. 2. Spectral density mapping and identification of nanosecond time-scale side-chain motions. J. Am. Chem. Soc. 124, 6449–6460.

    Article  PubMed  CAS  Google Scholar 

  109. Darley, M.G., and Popelier, P.L.A. (2008) Role of short-range electrostatics in torsional potentials. J. Phys. Chem A 112, 12954–12965.

    Article  PubMed  CAS  Google Scholar 

  110. Senn, H.M., and Thiel, W. (2009) QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. 48, 1198–1229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. LeMaster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hernández, G., Anderson, J.S., LeMaster, D.M. (2012). Electrostatics of Hydrogen Exchange for Analyzing Protein Flexibility. In: Shekhtman, A., Burz, D. (eds) Protein NMR Techniques. Methods in Molecular Biology, vol 831. Humana Press. https://doi.org/10.1007/978-1-61779-480-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-480-3_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-479-7

  • Online ISBN: 978-1-61779-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics