Skip to main content

Quantification of Amino Acids in a Single Cell by Microchip Electrophoresis with Chemiluminescence Detection

  • Protocol
  • First Online:
Amino Acid Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 828))

  • 4479 Accesses

Abstract

Analyzing individual cells allows detecting a minor group of abnormal cells present in a large population of normal cells. This ability can be essential to understanding diseases, such as cancer and diabetes. Microchip electrophoresis (MCE) is the technique of choice for single-cell analysis. However, since the channels in microfluidic devices are very small, achieving the desired assay sensitivity on a microfluidic platform remains a challenge. Here, we describe an MCE method with highly sensitive chemiluminescence detection for simultaneous determination of multiple amino acids present in single cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McClain MA et al (2003) Microfluidic devices for the high-throughput chemical analysis of cells. Anal Chem 75:5646–5655

    Article  PubMed  CAS  Google Scholar 

  2. Dufva M (2009) Microchips for cell-based assays. Methods Mol Biol 509:135–144

    Article  PubMed  CAS  Google Scholar 

  3. Kruth HS (1982) Flow cytometry: rapid biochemical analysis of single cells. Anal Biochem 125:225–242

    Article  PubMed  CAS  Google Scholar 

  4. Darzynkiewicz Z, Halicka HD, Zhao H (2010) Analysis of cellular DNA content by flow and laser scanning cytometry. Adv Exp Med Biol 676:137–47

    Article  PubMed  CAS  Google Scholar 

  5. Oates MD, Cooper BR, Jorgenson JW (1990) Quantitative amino acid analysis of individual snail neurons by open tubular liquid chromatography. Anal Chem 62:1573–1577

    Article  PubMed  CAS  Google Scholar 

  6. Troyer KP, Wightman RM (2002) Dopamine transport into a single cell in a picoliter vial. Anal Chem 74:5370–5375

    Article  PubMed  CAS  Google Scholar 

  7. Ishijima A, Yanagida T (2001) Single molecule nanobioscience. Trends Biochem Sci 26:438–444

    Article  PubMed  CAS  Google Scholar 

  8. Amantonico A et al (2010) Single-cell MALDI-MS as an analytical tool for studying intrapopulation metabolic heterogeneity of unicellular organisms. Anal Chem 82:7394–7400

    Article  PubMed  CAS  Google Scholar 

  9. Hogan BL, Yeung ES (1992) Determination of intracellular species at the level of a single erythrocyte via capillary electrophoresis with direct and indirect fluorescence detection. Anal Chem 64:2841–2845

    Article  PubMed  CAS  Google Scholar 

  10. Han FT, Lillard SJ (2002) Monitoring differential synthesis of RNA in individual cells by capillary electrophoresis. Anal Biochem 302:136–143

    Article  PubMed  CAS  Google Scholar 

  11. Hu S et al (2001) Capillary sodium dodecyl sulfate-DALT electrophoresis of proteins in a single human cancer cell. Electrophoresis 22:3677–3682

    Article  PubMed  CAS  Google Scholar 

  12. Zhang H, Jin WR (2004) Analysis of amino acids in individual human erythrocytes by capillary electrophoresis with electroporation for intracellular derivatization and laser-induced fluorescence detection. Electrophoresis 25:480–486

    Article  PubMed  CAS  Google Scholar 

  13. Fuller KM, Arriaga E A (2003) Analysis of individual acidic organelles by capillary electrophoresis with laser-induced fluorescence detection facilitated by the endocytosis of fluorescently labeled microspheres. Anal Chem 75:2123–2130

    Article  PubMed  CAS  Google Scholar 

  14. Zhi Q et al (2007) Coupling chemiluminescence with capillary electrophoresis to analyze single human red blood cells. Anal Chim Acta 583:217–222

    Article  PubMed  CAS  Google Scholar 

  15. Sims CE, Allbritton NL (2007) Analysis of ­single mammalian cells on-chip. Lab Chip 7:423–440

    Article  PubMed  CAS  Google Scholar 

  16. Huang WH et al (2008) Recent advances in single-cell analysis using capillary electrophoresis and microfluidic devices. J Chromatogr B 866:104–122

    Article  CAS  Google Scholar 

  17. Wu H, Wheeler A, Zare RN (2004) Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proc Natl Acad Sci USA 101:12809–12813

    Article  PubMed  CAS  Google Scholar 

  18. Ling YY, Yin XF, Fang ZL (2005) Simultaneous determination of glutathione and reactive oxygen species in individual cells by microchip electrophoresis. Electrophoresis 26:4759–4766

    Article  PubMed  CAS  Google Scholar 

  19. Klepárník K, Horký M (2003) Detection of DNA fragmentation in a single apoptotic cardiomyocyte by electrophoresis on a microfluidic device. Electrophoresis 24:3778–3783

    Article  PubMed  Google Scholar 

  20. Zhao S, Li X, Liu YM (2009) Integrated microfluidic system with chemiluminescence detection for single cell analysis after intracellular labeling. Anal Chem 81:3873–3878

    Article  PubMed  CAS  Google Scholar 

  21. Zhao S et al (2010) Determination of intracellular sulphydryl compounds by microchip electrophoresis with selective chemiluminescence detection. J Chromatogr A 1217:5732–5736

    Article  PubMed  CAS  Google Scholar 

  22. Jin W, Li X, Gao N (2003) Simultaneous determination of tryptophan and glutathione in individual rat hepatocytes by capillary zone electrophoresis with electrochemical detection at a carbon fiber bundle–Au/Hg dual electrode. Anal Chem 75:3859–3864

    Article  PubMed  CAS  Google Scholar 

  23. Kim M-S et al (2005) Fabrication of microchip electrophoresis devices and effects of channel surface properties on separation efficiency. Sensors and Actuators B 107:818–824.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from National Institutes of Health (SC1 GM089557) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ming Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liu, YM., Zhao, S. (2012). Quantification of Amino Acids in a Single Cell by Microchip Electrophoresis with Chemiluminescence Detection. In: Alterman, M., Hunziker, P. (eds) Amino Acid Analysis. Methods in Molecular Biology, vol 828. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-445-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-445-2_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-444-5

  • Online ISBN: 978-1-61779-445-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics