Skip to main content

Using Drosophila Larval Imaginal Discs to Study Low-Dose Radiation-Induced Cell Cycle Arrest

  • Protocol
  • First Online:
Cell Cycle Checkpoints

Part of the book series: Methods in Molecular Biology ((MIMB,volume 782))

Abstract

Under genotoxic stress, activation of cell cycle checkpoint responses leads to cell cycle arrest, which allows cells to repair DNA damage before continuing to cycle. Drosophila larval epithelial sacs, called imaginal discs, are an excellent in vivo model system for studying radiation-induced cell cycle arrest. Larval imaginal discs go into cell cycle arrest after being subjected to low-dose irradiation, are subject to easy genetic manipulation, are not crucial for survival of the organism, and can be dissected easily for further molecular or cellular analysis. In this chapter, we describe methods for assessing low-dose irradiation-induced cell cycle arrest. Mitotic cells are identified by immunofluorescence staining for the mitotic marker phosphorylated histone H3 (phospho-histone H3 or pH3). When wandering third-instar control larvae, without transgene expression, are exposed to 500 rads of X-ray or γ-ray irradiation, the number of pH3-positive cells in wing imaginal discs is reduced from hundreds before irradiation to approximately 30 after irradiation, with an equal distribution between the anterior and posterior compartments (Yan et al., 2011, FASEB J). Using the GAL4/UAS system, RNAi, cDNA, or microRNA sponge transgenes can be expressed in the posterior compartment of the wing disc using drivers such as engrailed (en)-Gal4, while the anterior compartment serves as an internal control. This approach makes it possible to do genome-wide genetic screening for molecules involved in radiation-induced cell cycle arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yan, S. J., Lim, S. J., Shi, S., Dutta, P., and Li, W. X. (2011) Unphosphorylated STAT and heterochromatin protect genome stability, FASEB J. 1, 232–241.

    Google Scholar 

  2. Morgan, T. H. (1910) Sex limited inheritance in Drosophila, Science 32, 120–122.

    Article  PubMed  CAS  Google Scholar 

  3. Bellen, H. J., Tong, C., and Tsuda, H. (2010) 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future, Nat Rev Neurosci 11, 514–522.

    Article  PubMed  CAS  Google Scholar 

  4. Cohen, B. (1995) Nobel committee rewards pioneers of development studies in fruitflies, Nature 377, 465.

    PubMed  CAS  Google Scholar 

  5. Raju, T. N. (1999) The Nobel chronicles. 1933: Thomas Hunt Morgan (1866–1945), Lancet 353, 157.

    Article  PubMed  CAS  Google Scholar 

  6. Elledge, S. J. (1996) Cell cycle checkpoints: preventing an identity crisis, Science 274, 1664–1672.

    Article  PubMed  CAS  Google Scholar 

  7. Song, Y. H. (2005) Drosophila melanogaster: a model for the study of DNA damage checkpoint response, Mol Cells 19, 167–179.

    PubMed  CAS  Google Scholar 

  8. Weatherbee, S. D., and Carroll, S. B. (1999) Selector genes and limb identity in arthropods and vertebrates, Cell 97, 283–286.

    Article  PubMed  CAS  Google Scholar 

  9. Yan, S. J., Gu, Y., Li, W. X., and Fleming, R. J. (2004) Multiple signaling pathways and a selector protein sequentially regulate Drosophila wing development, Development 131, 285–298.

    Article  PubMed  CAS  Google Scholar 

  10. Garcia-Bellido, A., and Merriam, J. R. (1971) Parameters of the wing imaginal disc development of Drosophila melanogaster, Dev Biol 24, 61–87.

    Article  PubMed  CAS  Google Scholar 

  11. Brand, A. H., and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development 118, 401–415.

    PubMed  CAS  Google Scholar 

  12. Dietzl, G., Chen, D., Schnorrer, F., Su, K. C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., Couto, A., Marra, V., Keleman, K., and Dickson, B. J. (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila, Nature 448, 151–156.

    Article  PubMed  CAS  Google Scholar 

  13. Loya, C. M., Lu, C. S., Van Vactor, D., and Fulga, T. A. (2009) Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms, Nat Methods 6, 897–903.

    Article  PubMed  CAS  Google Scholar 

  14. Pospisilik, J. A., Schramek, D., Schnidar, H., Cronin, S. J., Nehme, N. T., Zhang, X., Knauf, C., Cani, P. D., Aumayr, K., Todoric, J., Bayer, M., Haschemi, A., Puviindran, V., Tar, K., Orthofer, M., Neely, G. G., Dietzl, G., Manoukian, A., Funovics, M., Prager, G., Wagner, O., Ferrandon, D., Aberger, F., Hui, C. C., Esterbauer, H., and Penninger, J. M. (2010) Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate, Cell 140, 148–160.

    Google Scholar 

  15. Neely, G. G., Kuba, K., Cammarato, A., Isobe, K., Amann, S., Zhang, L., Murata, M., Elmen, L., Gupta, V., Arora, S., Sarangi, R., Dan, D., Fujisawa, S., Usami, T., Xia, C. P., Keene, A. C., Alayari, N. N., Yamakawa, H., Elling, U., Berger, C., Novatchkova, M., Koglgruber, R., Fukuda, K., Nishina, H., Isobe, M., Pospisilik, J. A., Imai, Y., Pfeufer, A., Hicks, A. A., Pramstaller, P. P., Subramaniam, S., Kimura, A., Ocorr, K., Bodmer, R., and Penninger, J. M. (2010) A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function, Cell 141, 142–153.

    Google Scholar 

  16. Bodenstein, D. (1994) The postembryonic development of Drosophila. In Biology of Drosophila (ed. M. Demerec), Facsimile edn., pp. 275–367, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Christine Summers in the Bohmann lab for providing recipes and protocols for making fly food and apple juice agar plates. We thank Dr L. Silver-Morse for critical reading of the manuscript. S.J.Y. is supported by a postdoctoral training grant (T32CA009363) from the National Institutes of Health. The Li lab is supported by grants from the National Institutes of Health, an American Cancer Society Research Scholar Grant, and a Leukemia & Lymphoma Society Research Scholar Grant to W.X.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shian-Jang Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yan, SJ., Li, W.X. (2011). Using Drosophila Larval Imaginal Discs to Study Low-Dose Radiation-Induced Cell Cycle Arrest. In: Li, W. (eds) Cell Cycle Checkpoints. Methods in Molecular Biology, vol 782. Humana Press. https://doi.org/10.1007/978-1-61779-273-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-273-1_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-272-4

  • Online ISBN: 978-1-61779-273-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics