Skip to main content

Identification and Characterization of Protein Complexes from Total Brain and Synaptoneurosomes: Heterogeneity of Molecular Complexes in Distinct Subcellular Domains

  • Protocol
  • First Online:
Neuroproteomics

Part of the book series: Neuromethods ((NM,volume 57))

Abstract

Neurons are highly polarized cells characterized by subcellular microdomains: the synapses. These compartments are specialized structures and are, for certain cellular pathways, independent from the cell body. To achieve such a functional specificity, including local mRNA translation, different molecular complexes are transported along the dendrites and locally regulated. Characterization of such a molecular diversity may help to elucidate neuronal functions as well as detect differences in neuronal dysfunctions. Here, we describe a method to specifically dissect a molecular complex according to the neuronal subcellular compartment. Specifically, the complexes are isolated by immunoprecipitation of the protein of interest from brain lysates or from purified synapses (synaptoneurosomes) and identified by mass spectrometry analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arimura, N., and Kaibuchi, K. (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8, 194–205.

    Article  PubMed  CAS  Google Scholar 

  2. da Silva, J. S., and Dotti, C. G. (2002) Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3, 694–704.

    Article  PubMed  Google Scholar 

  3. Ye, B., Zhang, Y., Song, W., Younger, S. H., Jan, L. Y., and Jan, Y. N. (2007) Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130, 717–29.

    Article  PubMed  CAS  Google Scholar 

  4. Conde, C., and Caceres, A. (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10, 319–32.

    Article  PubMed  CAS  Google Scholar 

  5. Holtmaat, A., and Svoboda, K. (2009) Experience-dependent structural synaptic ­plasticity in the mammalian brain. Nat Rev Neurosci 10, 647–58.

    Article  PubMed  CAS  Google Scholar 

  6. Ziv, N. E., and Garner, C. C. (2004) Cellular and molecular mechanisms of presynaptic assembly. Nat Rev Neurosci 5, 385–99.

    Article  PubMed  CAS  Google Scholar 

  7. Kennedy, M. B., Beale, H. C., Carlisle, H. J., and Washburn, L. R. (2005) Integration of biochemical signalling in spines. Nat Rev Neurosci 6, 423–34.

    Article  PubMed  CAS  Google Scholar 

  8. Steward, O., and Schuman, E. M. (2003) Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347–59.

    Article  PubMed  CAS  Google Scholar 

  9. De Rubeis, S., and Bagni, C. (2008) Synaptosome. Encyclopedia of Neuroscience Eds Binder MD, Hirokawa N, Windhorst U, Hirsch, MC.

    Google Scholar 

  10. Hollingsworth, E. B., McNeal, E. T., Burton, J. L., Williams, R. J., Daly, J. W., and Creveling, C. R. (1985) Biochemical characterization of a ­filtered synaptoneurosome preparation from guinea pig cerebral ­cortex: cyclic adenosine 3’:5’-monophosphate-­generating systems, receptors, and enzymes. J Neurosci 5, 2240–53.

    PubMed  CAS  Google Scholar 

  11. Verhage, M., McMahon, H. T., Ghijsen, W. E., Boomsma, F., Scholten, G., Wiegant, V. M., and Nicholls, D. G. (1991) Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. Neuron 6, 517–24.

    Article  PubMed  CAS  Google Scholar 

  12. Takei, K., Mundigl, O., Daniell, L., and De Camilli, P. (1996) The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J Cell Biol 133, 1237–50.

    Article  PubMed  CAS  Google Scholar 

  13. Nicholls, D. G. (2003) Bioenergetics and transmitter release in the isolated nerve terminal. Neurochem Res 28, 1433–41.

    Article  PubMed  CAS  Google Scholar 

  14. Rao, A., and Steward, O. (1991) Evidence that protein constituents of postsynaptic membrane specializations are locally synthesized: analysis of proteins synthesized within synaptosomes. J Neurosci 11, 2881–95.

    PubMed  CAS  Google Scholar 

  15. Choi, S. W., Gerencser, A. A., and Nicholls, D. G. (2009) Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J Neurochem 109, 1179–91.

    Article  PubMed  CAS  Google Scholar 

  16. Nicholls, D. G., and Sihra, T. S. (1986) Synaptosomes possess an exocytotic pool of glutamate. Nature 321, 772–3.

    Article  PubMed  CAS  Google Scholar 

  17. Anggono, V., Smillie, K. J., Graham, M. E., Valova, V. A., Cousin, M. A., and Robinson, P. J. (2006) Syndapin I is the phosphorylation-regulated dynamin I partner in synaptic vesicle endocytosis. Nat Neurosci 9, 752–60.

    Article  PubMed  CAS  Google Scholar 

  18. Serulle, Y., Sugimori, M., and Llinas, R. R. (2007) Imaging synaptosomal calcium concentration microdomains and vesicle fusion by using total internal reflection fluorescent microscopy. Proc Natl Acad Sci USA 104, 1697–702.

    Article  PubMed  CAS  Google Scholar 

  19. Scheetz, A. J., Nairn, A. C., and Constantine-Paton, M. (2000) NMDA receptor-mediated control of protein synthesis at developing synapses. Nat Neurosci 3, 211–6.

    Article  PubMed  CAS  Google Scholar 

  20. Bagni, C., Mannucci, L., Dotti, C. G., and Amaldi, F. (2000) Chemical stimulation of ­synaptosomes modulates alpha-Ca2+/­calmodulin-dependent protein kinase II mRNA association to polysomes. J Neurosci 20, RC76.

    Google Scholar 

  21. Takei, N., Inamura, N., Kawamura, M., Namba, H., Hara, K., Yonezawa, K., and Nawa, H. (2004) Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of ­translation machinery and protein synthesis in neuronal dendrites. J Neurosci 24, 9760–9.

    Article  PubMed  CAS  Google Scholar 

  22. Napoli, I., Mercaldo, V., Boyl, P. P., Eleuteri, B., Zalfa, F., De Rubeis, S., Di Marino, D., Mohr, E., Massimi, M., Falconi, M., Witke, W., Costa-Mattioli, M., Sonenberg, N., Achsel, T., and Bagni, C. (2008) The fragile X syndrome protein represses activity-­dependent translation through CYFIP1, a new 4E-BP. Cell 134, 1042–54.

    Article  PubMed  CAS  Google Scholar 

  23. Corera, A. T., Doucet, G., and Fon, E. A. (2009) Long-term potentiation in isolated dendritic spines. PLoS One 4, e6021.

    Article  PubMed  Google Scholar 

  24. Gray, E. G., and Whittaker, V. P. (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96, 79–88.

    PubMed  CAS  Google Scholar 

  25. Nagy, A., and Delgado-Escueta, A. V. (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J Neurochem 43, 1114–23.

    Article  PubMed  CAS  Google Scholar 

  26. Lopes, L. V., Cunha, R. A., and Ribeiro, J. A. (1999) Cross talk between A(1) and A(2A) adenosine receptors in the hippocampus and cortex of young adult and old rats. J Neurophysiol 82, 3196–203.

    PubMed  CAS  Google Scholar 

  27. Ferrari, F., Mercaldo, V., Piccoli, G., Sala, C., Cannata, S., Achsel, T., and Bagni, C. (2007) The fragile X mental retardation protein-RNP granules show an mGluR-dependent localization in the post-synaptic spines. Mol Cell Neurosci 34, 343–54.

    Article  PubMed  CAS  Google Scholar 

  28. Klemmer, P., Smit, A. B., and Li, K. W. (2009) Proteomics analysis of immuno-precipitated synaptic protein complexes. J Proteomics 72, 82–90.

    Article  PubMed  CAS  Google Scholar 

  29. Harlow, E., and Lane, D. E. (1988) Antibodies, A Laboratory Manual. Cold Spring Harb Lab, N.Y., 617–618.

    Google Scholar 

Download references

Acknowledgments

This study was supported by Telethon, Compagnia di San Paolo, COFIN and FWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Bagni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

De Rubeis, S., Bagni, C. (2011). Identification and Characterization of Protein Complexes from Total Brain and Synaptoneurosomes: Heterogeneity of Molecular Complexes in Distinct Subcellular Domains. In: Li, K. (eds) Neuroproteomics. Neuromethods, vol 57. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-111-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-111-6_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-110-9

  • Online ISBN: 978-1-61779-111-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics