Skip to main content

Proteomic Approaches for the Study of Electrical Synapses and Associated Protein-Interaction Complexes

  • Protocol
  • First Online:
The Cytoskeleton

Part of the book series: Neuromethods ((NM,volume 79))

  • 1166 Accesses

Abstract

Recent advances in the identification and analysis of protein–protein interaction complexes associated with synapses and synaptic proteins deepened not only our insights into the molecular composition and dynamic structural makeup of interneuronal connections but contributed also significantly to our understanding of the molecular and mechanistic aspects underlying functional plasticity in neuronal networks. In particular proteome analytical tools, combining traditional isolation protocols with modern mass spectrometric approaches, were utilized successfully for the molecular analysis of chemical synapses and other neuronal subcellular structures revealing new and exciting insights into the temporal and spatial changes of the proteins composing or associated with for example synaptic vesicles, synaptic membranes, or postsynaptic densities (PSDs). Proteomic approaches may thus offer also a chance to gain valuable insights into the so far elusive molecular composition of electrical synapses, the Cinderella fated and long neglected little brethren of “classical” chemical synapses. In this chapter we provide an experimental basis of how such an analysis can be designed, with a major focus on the most abundant electrical synapse protein, connexin36.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Furshpan EJ, Potter DD (1959) Transmission at the giant motor synapses of the crayfish. J Physiol 145(2):289–325

    PubMed  CAS  Google Scholar 

  2. Furshpan EJ, Potter DD (1957) Mechanism of nerve-impulse transmission at a crayfish synapse. Nature 180(4581):342–343

    Article  PubMed  CAS  Google Scholar 

  3. Costain WJ et al (2010) Proteomic analysis of synaptosomal protein expression reveals that cerebral ischemia alters lysosomal Psap processing. Proteomics 10(18):3272–3291

    Article  PubMed  CAS  Google Scholar 

  4. Bai F, Witzmann FA (2007) Synaptosome proteomics. Subcell Biochem 43:77–98

    Article  PubMed  Google Scholar 

  5. Witzmann FA et al (2005) A proteomic survey of rat cerebral cortical synaptosomes. Proteomics 5(8):2177–2201

    Article  PubMed  CAS  Google Scholar 

  6. Grant SG et al (2005) Synapse proteomics of multiprotein complexes: en route from genes to nervous system diseases. Hum Mol Genet 14 Spec No. 2:R225–R234

    Article  PubMed  Google Scholar 

  7. Jordan BA et al. (2006) New tricks for an old dog: proteomics of the PSD

    Google Scholar 

  8. Li X, Lu S, Nagy JI (2009) Direct association of connexin36 with zonula occludens-2 and zonula occludens-3. Neurochem Int 54(5–6):393–402

    Article  PubMed  CAS  Google Scholar 

  9. Flores CE et al (2008) Interaction between connexin35 and zonula occludens-1 and its potential role in the regulation of electrical synapses. Proc Natl Acad Sci U S A 105(34):12545–12550

    Article  PubMed  CAS  Google Scholar 

  10. Li X et al (2004) Neuronal connexin36 association with zonula occludens-1 protein (ZO-1) in mouse brain and interaction with the first PDZ domain of ZO-1. Eur J Neurosci 19(8):2132–2146

    Article  PubMed  Google Scholar 

  11. Burr GS et al (2005) Calcium-dependent binding of calmodulin to neuronal gap junction proteins. Biochem Biophys Res Commun 335(4):1191–1198

    Article  PubMed  CAS  Google Scholar 

  12. Bissiere S et al (2011) Electrical synapses control hippocampal contributions to fear learning and memory. Science 331(6013):87–91

    Article  PubMed  CAS  Google Scholar 

  13. LeBeau FE et al (2003) The role of electrical signaling via gap junctions in the generation of fast network oscillations. Brain Res Bull 62(1):3–13

    Article  PubMed  CAS  Google Scholar 

  14. Rozental R, Giaume C, Spray DC (2000) Gap junctions in the nervous system. Brain Res Brain Res Rev 32(1):11–15

    Article  PubMed  CAS  Google Scholar 

  15. Haas JS, Zavala B, Landisman CE (2011) Activity-dependent long-term depression of electrical synapses. Science 334(6054):389–393

    Article  PubMed  CAS  Google Scholar 

  16. Hayut I et al (2011) LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics. PLoS Comput Biol 7(10):e1002248

    Article  PubMed  CAS  Google Scholar 

  17. Wang Y, Belousov AB (2011) Deletion of neuronal gap junction protein connexin 36 impairs hippocampal LTP. Neurosci Lett 502(1):30–32

    Article  PubMed  CAS  Google Scholar 

  18. Wu CL et al (2011) Heterotypic gap junctions between two neurons in the drosophila brain are critical for memory. Curr Biol 21(10):848–854

    Article  PubMed  CAS  Google Scholar 

  19. Lisman JE, McIntyre CC (2001) Synaptic plasticity: a molecular memory switch. Curr Biol 11(19):R788–R791

    Article  PubMed  CAS  Google Scholar 

  20. Barria A, Malinow R (2005) NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48(2):289–301

    Article  PubMed  CAS  Google Scholar 

  21. Sanhueza M et al (2011) Role of the CaMKII/NMDA Receptor Complex in the Maintenance of Synaptic Strength. J Neurosci 31(25):9170–9178

    Article  PubMed  CAS  Google Scholar 

  22. Duffy HS et al (2002) pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains. J Biol Chem 277(39):36706–36714

    Article  PubMed  CAS  Google Scholar 

  23. Alev C et al (2008) The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors. Proc Natl Acad Sci U S A 105(52):20964–20969

    Article  PubMed  CAS  Google Scholar 

  24. Gattiker A, Gasteiger E, Bairoch A (2002) ScanProsite: a reference implementation of a PROSITE scanning tool. Appl Bioinformatics 1(2):107–108

    PubMed  CAS  Google Scholar 

  25. Yap KL et al (2000) Calmodulin target database. J Struct Funct Genomics 1(1):8–14

    Article  PubMed  CAS  Google Scholar 

  26. Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247

    Article  PubMed  CAS  Google Scholar 

  27. Link AJ et al (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17(7):676–682

    Article  PubMed  CAS  Google Scholar 

  28. Elias JE et al (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2(9):667–675

    Article  PubMed  CAS  Google Scholar 

  29. Urschel S et al (2006) Protein kinase A-mediated phosphorylation of connexin36 in mouse retina results in decreased gap junctional communication between AII amacrine cells. J Biol Chem 281(44):33163–33171

    Article  PubMed  CAS  Google Scholar 

  30. Kothmann WW et al (2007) Connexin 35/36 is phosphorylated at regulatory sites in the retina. Vis Neurosci 24(3):363–375

    Article  PubMed  Google Scholar 

  31. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–1362

    Article  PubMed  CAS  Google Scholar 

  32. Xue Y et al (2011) GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng Des Sel 24(3):255–260

    Article  PubMed  CAS  Google Scholar 

  33. Iakoucheva LM et al (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049

    Article  PubMed  CAS  Google Scholar 

  34. Huang HD et al (2005) KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res 33(Web Server issue):W226–W229

    Article  PubMed  CAS  Google Scholar 

  35. Hilder TL et al (2007) Proteomic identification of the cerebral cavernous malformation signaling complex. J Proteome Res 6(11):4343–4355

    Article  PubMed  CAS  Google Scholar 

  36. Chang IF (2006) Mass spectrometry-based proteomic analysis of the epitope-tag affinity purified protein complexes in eukaryotes. Proteomics 6(23):6158–6166

    Article  PubMed  CAS  Google Scholar 

  37. Barnouin K (2004) Two-dimensional gel electrophoresis for analysis of protein complexes. Methods Mol Biol 261:479–498

    PubMed  CAS  Google Scholar 

  38. Graumann J et al (2004) Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Mol Cell Proteomics 3(3):226–237

    Article  PubMed  CAS  Google Scholar 

  39. Li X et al (2009) Proteomic screen for multiprotein complexes in synaptic plasma membrane from rat hippocampus by blue native gel electrophoresis and tandem mass spectrometry. J Proteome Res 8(7):3475–3486

    Article  PubMed  CAS  Google Scholar 

  40. Jordan BA et al (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics 3(9):857–871

    Article  PubMed  CAS  Google Scholar 

  41. Satoh K et al (2002) Identification of activity-regulated proteins in the postsynaptic density fraction. Genes Cells 7(2):187–197

    Article  PubMed  CAS  Google Scholar 

  42. Klemmer P, Smit AB, Li KW (2009) Proteomics analysis of immuno-precipitated synaptic protein complexes. J Proteomics 72(1):82–90

    Article  PubMed  CAS  Google Scholar 

  43. Butkevich E et al (2004) Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton. Curr Biol 14(8):650–658

    Article  PubMed  CAS  Google Scholar 

  44. Singh D et al (2005) Connexin 43 interacts with zona occludens-1 and -2 proteins in a cell cycle stage-specific manner. J Biol Chem 280(34):30416–30421

    Article  PubMed  CAS  Google Scholar 

  45. Singh D, Lampe PD (2003) Identification of connexin-43 interacting proteins. Cell Commun Adhes 10(4–6):215–220

    PubMed  CAS  Google Scholar 

  46. Giepmans BN et al (2001) Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol 11(17):1364–1368

    Article  PubMed  CAS  Google Scholar 

  47. Kitao H, Takata M (2006) Purification of ­TAP-tagged proteins by two-step pull down from DT40 cells. Subcell Biochem 40:409–413

    PubMed  Google Scholar 

  48. Tagwerker C et al (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol Cell Proteomics 5(4):737–748

    PubMed  CAS  Google Scholar 

  49. Kaneko A et al (2004) Tandem affinity purification of the Candida albicans septin protein complex. Yeast 21(12):1025–1033

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Drs. Mamoru Matsubara, Stephanie Urschel, and Dirk Wolters for their kind and constructive support during mass spectrometric analysis and identification of protein-interaction partners and phosphorylation sites of Cx36.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Dermietzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alev, C., Zoidl, G., Dermietzel, R. (2013). Proteomic Approaches for the Study of Electrical Synapses and Associated Protein-Interaction Complexes. In: Dermietzel, R. (eds) The Cytoskeleton. Neuromethods, vol 79. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-266-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-266-7_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-265-0

  • Online ISBN: 978-1-62703-266-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics