Skip to main content

Molecular Dynamics of Membrane Peptides and Proteins: Principles and Comparison to Experimental Data

  • Protocol
  • First Online:
Membrane Protein Structure Determination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 654))

Abstract

Molecular dynamics (MD) simulation is a standard tool used to assess the motion of biomolecules at atomic resolution. It requires a so-called “force field” that allows the evaluation of an empirical energy from the 3D coordinates of the atoms in the system. In this chapter, the application of MD simulations to membrane proteins and peptides is described with a particular emphasis on the comparison of MD results to experimental data. Such a comparison can be used either for (1) validating the results of a simulation, (2) interpreting an experiment at the atomic level, or (3) calibrating the force field. This last step is particularly important for the use of MD as a predictive tool. As an illustration, a comparison of 2H NMR experiments to MD simulations of a transmembrane peptide is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dodson GG, Lane DP, Verma CS (2008) Molecular simulations of protein dynamics: new windows on mechanisms in biology. EMBO Rep 9(2):144–150

    Article  PubMed  CAS  Google Scholar 

  2. Lindahl ER (2008) Molecular dynamics simulations. Methods Mol Biol 443:3–23

    Article  PubMed  CAS  Google Scholar 

  3. van Gunsteren WF, Bakowies D, Baron R et al (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed Engl 45(25):4064–4092

    Article  PubMed  Google Scholar 

  4. Woolf TB, Roux B (1994) Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc Natl Acad Sci U S A 91(24):11631–11635

    Article  PubMed  CAS  Google Scholar 

  5. Ash WL, Zlomislic MR, Oloo EO, Tieleman DP (2004) Computer simulations of membrane proteins. Biochim Biophys acta 1666(1–2):158–189

    PubMed  CAS  Google Scholar 

  6. Gumbart J, Wang Y, Aksimentiev A, Tajkhorshid E, Schulten K (2005) Molecular dynamics simulations of proteins in lipid bilayers. Curr Opin Struct Biol 15(4):423–431

    Article  PubMed  CAS  Google Scholar 

  7. van Gunsteren WF, Dolenc J (2008) Biomolecular simulation: historical picture and future perspectives. Biochem Soc Trans 36(Pt 1):11–15

    Article  PubMed  Google Scholar 

  8. van Gunsteren WF, Dolenc J, Mark AE (2008) Molecular simulation as an aid to experimentalists. Curr Opin Struct Biol 18(2):49–53

    Google Scholar 

  9. Guvench O, MacKerell AD Jr (2008) Comparison of protein force fields for molecular dynamics simulations. Methods Mol Biol 443:63–88

    Article  PubMed  CAS  Google Scholar 

  10. Jorgensen WL, Tirado-Rives J (2005) Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci U S A 102(19):6665–6670

    Article  PubMed  CAS  Google Scholar 

  11. Mackerell AD Jr (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604

    Article  PubMed  CAS  Google Scholar 

  12. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85

    Article  PubMed  CAS  Google Scholar 

  13. Case DA, Cheatham TE 3rd, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  PubMed  CAS  Google Scholar 

  14. MacKerrel AD Jr, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  Google Scholar 

  15. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676

    Article  PubMed  CAS  Google Scholar 

  16. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  17. Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72(5):2002–2013

    Article  PubMed  CAS  Google Scholar 

  18. Feller S, MacKerell AD Jr (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104(31):7510–7515

    Article  CAS  Google Scholar 

  19. Sonne J, Jensen MO, Hansen FY, Hemmingsen L, Peters GH (2007) Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension. Biophys J 92(12):4157–4167

    Article  PubMed  CAS  Google Scholar 

  20. van Gunsteren WF, Berendsen HJC (1987) Groningen Molecular Simulation (GROMOS) library manual. Biomos, Groningen

    Google Scholar 

  21. Tieleman DP, MacCallum JL, Ash WL, Kandt C, Xu Z, Monticelli L (2006) Membrane protein simulations with a united-atom lipid and all-atom protein model: lipid–protein interactions, side chain transfer free energies and model proteins. J Phys Condens Matter 18(28):S1221–S1234

    Article  PubMed  CAS  Google Scholar 

  22. Sapay N, Tieleman DP (2008) Molecular dynamics simulation of lipid–protein interactions. Curr Top Memb 60:111–130

    Article  CAS  Google Scholar 

  23. Siu SW, Vacha R, Jungwirth P, Bockmann RA (2008) Biomolecular simulations of membranes: physical properties from different force fields. J Chem Phys 128(12):125103

    Article  PubMed  Google Scholar 

  24. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342

    Google Scholar 

  25. Jorgensen WL, Chandrasekha J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  26. Feig M (2008) Implicit membrane models for membrane protein simulation. Methods Mol Biol 443:181–196

    Article  PubMed  CAS  Google Scholar 

  27. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  28. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  PubMed  CAS  Google Scholar 

  29. http://moose.bio.ucalgary.ca/index.php?page=Structures_and_Topologies

  30. http://www.rcsb.org/

  31. http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html

  32. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto, CA

    Google Scholar 

  33. http://www.pymol.org

  34. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    Article  PubMed  CAS  Google Scholar 

  35. http://www.expasy.org/spdbv/

  36. Alland C, Moreews F, Boens D et al (2005) RPBS: a web resource for structural bioinformatics. Nucleic Acids Res 33(Web Server issue):W44–W49

    Article  PubMed  CAS  Google Scholar 

  37. http://bioserv.rpbs.jussieu.fr/RPBS/cgi-bin/Ressource.cgi?chzn_lg=an&chzn_rsrc=BasicBuilder

  38. Biggin PC, Bond PJ (2008) Molecular dynamics simulations of membrane proteins. Methods Mol Biol 443:147–160

    Article  PubMed  CAS  Google Scholar 

  39. Faraldo-Gomez JD, Smith GR, Sansom MS (2002) Setting up and optimization of membrane protein simulations. Eur Biophys J 31(3):217–227

    Article  PubMed  CAS  Google Scholar 

  40. Jo S, Kim T, Im W (2007) Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2(9):e880

    Article  PubMed  Google Scholar 

  41. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865

    Article  PubMed  CAS  Google Scholar 

  42. Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41(4):475–488

    Article  PubMed  CAS  Google Scholar 

  43. Feller SE (2007) Molecular dynamics simulations as a complement to nuclear magnetic resonance and X-ray diffraction measurements. Methods Mol Biol 400:89–102

    Article  PubMed  CAS  Google Scholar 

  44. Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  45. Auffinger P, Beveridge DL (1995) A simple test for evaluating the truncation effects in simulations of systems involving charged groups. Chem Phys Lett 234(4–6):413–415

    Article  CAS  Google Scholar 

  46. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N [center-dot] log(N) method for Ewald sums in large systems. J Chem Phys 12:10089–10092

    Article  Google Scholar 

  47. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  48. Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995) A generalized reaction field method for molecular dynamics simulations. J Chem Phys 102:5451–5459

    Article  CAS  Google Scholar 

  49. Anézo C, de Vries AH, Höltje H-D, Tieleman DP, Marrink SJ (2003) Methodological issues in lipid bilayer simulations. J Phys Chem B 107(35):9424–9433

    Article  Google Scholar 

  50. Patra M, Karttunen M, Hyvonen MT, Falck E, Lindqvist P, Vattulainen I (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 84(6):3636–3645

    Article  PubMed  CAS  Google Scholar 

  51. Cordomi A, Edholm O, Perez JJ (2007) Effect of different treatments of long-range interactions and sampling conditions in molecular dynamic simulations of rhodopsin embedded in a dipalmitoyl phosphatidylcholine bilayer. J Comput Chem 28(6):1017–1030

    Article  PubMed  CAS  Google Scholar 

  52. van Gunsteren WF, Mark AE (1992) On the interpretation of biochemical data by molecular dynamics computer simulation. Eur J Biochem 204(3):947–961

    Article  PubMed  Google Scholar 

  53. Lacapere JJ, Pebay-Peyroula E, Neumann JM, Etchebest C (2007) Determining membrane protein structures: still a challenge! Trends Biochem Sci 32(6):259–270

    Article  PubMed  CAS  Google Scholar 

  54. Monticelli L, Kandasamy S, Periole X, Larson R, Tieleman DP, Marrink SJ (2008) The MARTINI coarse grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  Google Scholar 

  55. Chipot C (2008) Free energy calculations applied to membrane proteins. Methods Mol Biol 443:121–144

    Article  PubMed  CAS  Google Scholar 

  56. Yawata Y (ed) (2004) Composition of normal red cell membranes. In: Cell membrane. Wiley, Weinheim, pp 27–46

    Google Scholar 

  57. Tsukazaki T, Mori H, Fukai S et al (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455(7215):988–991

    Article  PubMed  CAS  Google Scholar 

  58. Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci U S A 105(4):1198–1203

    Article  PubMed  CAS  Google Scholar 

  59. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comp Phys 23(2):187–199

    Article  Google Scholar 

  60. Allen TW, Andersen OS, Roux B (2006) Molecular dynamics – potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels. Biophys Chem 124(3):251–267

    Article  PubMed  CAS  Google Scholar 

  61. Corry B, Martinac B (2008) Bacterial mechanosensitive channels: experiment and theory. Biochim Biophys Acta 1778(9):1859–1870

    Article  PubMed  CAS  Google Scholar 

  62. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469(3):159–195

    Article  PubMed  CAS  Google Scholar 

  63. Pastor RW, Venable RM, Feller SE (2002) Lipid bilayers, NMR relaxation, and computer simulations. Acc Chem Res 35(6):438–446

    Article  PubMed  CAS  Google Scholar 

  64. Wohlert J, Edholm O (2006) Dynamics in atomistic simulations of phospholipid membranes: nuclear magnetic resonance relaxation rates and lateral diffusion. J Chem Phys 125(20):204703

    Article  PubMed  Google Scholar 

  65. Benz RW, Castro-Roman F, Tobias DJ, White SH (2005) Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. Biophys J 88(2):805–817

    Article  PubMed  CAS  Google Scholar 

  66. Klauda JB, Kucerka N, Brooks BR, Pastor RW, Nagle JF (2006) Simulation-based methods for interpreting x-ray data from lipid bilayers. Biophys J 90(8):2796–2807

    Article  PubMed  CAS  Google Scholar 

  67. Vermeer LS, de Groot BL, Reat V, Milon A, Czaplicki J (2007) Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. Eur Biophys J 36(8):919–931

    Article  PubMed  CAS  Google Scholar 

  68. Ozdirekcan S, Etchebest C, Killian JA, Fuchs PF (2007) On the orientation of a designed transmembrane peptide: toward the right tilt angle? J Am Chem Soc 129(49):15174–15181

    Article  PubMed  Google Scholar 

  69. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27–28

    Article  PubMed  CAS  Google Scholar 

  70. http://www.ks.uiuc.edu/Research/vmd/

  71. Ozdirekcan S, Rijkers DT, Liskamp RM, Killian JA (2005) Influence of flanking residues on tilt and rotation angles of transmembrane peptides in lipid bilayers. A solid-state 2H NMR study. Biochemistry 44(3):1004–1012

    Article  PubMed  Google Scholar 

  72. Strandberg E, Ozdirekcan S, Rijkers DT et al (2004) Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid-state NMR. Biophys J 86(6):3709–3721

    Article  PubMed  CAS  Google Scholar 

  73. Esteban-Martin S, Salgado J (2007) The dynamic orientation of membrane-bound peptides: bridging simulations and experiments. Biophys J 93(12):4278–4288

    Article  PubMed  CAS  Google Scholar 

  74. Vostrikov VV, Grant CV, Daily AE, Opella SJ, Koeppe RE 2nd (2008) Comparison of “Polarization inversion with spin exchange at magic angle” and “geometric analysis of labeled alanines” methods for transmembrane helix alignment. J Am Chem Soc 130(38):12584–12585

    Article  PubMed  CAS  Google Scholar 

  75. Straus SK, Scott WRP, Watts A (2003) Assessing the effects of time and spatial averaging in 15N chemical shift/15N-1H dipolar correlation solid state NMR experiments. J Biomol NMR 26(4):283–295

    Article  PubMed  CAS  Google Scholar 

  76. Sparr E, Ash WL, Nazarov PV et al (2005) Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch. J Biol Chem 280(47):39324–39331

    Article  PubMed  CAS  Google Scholar 

  77. Shirts M, Pande VS (2000) Computing: screen savers of the world unite! Science 290(5498):1903–1904

    Article  PubMed  CAS  Google Scholar 

  78. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  Google Scholar 

  79. Hunenberger PH, McCammon JA (1999) Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study. Biophys Chem 78(1–2):69–88

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick F. J. Fuchs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fuchs, P.F.J. (2010). Molecular Dynamics of Membrane Peptides and Proteins: Principles and Comparison to Experimental Data. In: Lacapère, JJ. (eds) Membrane Protein Structure Determination. Methods in Molecular Biology, vol 654. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-762-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-762-4_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-761-7

  • Online ISBN: 978-1-60761-762-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics