Skip to main content

Time-Lapse Fluorescence Microscopy of Saccharomyces cerevisiae in Meiosis

  • Protocol
  • First Online:
Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 558))

Abstract

Movements are implicit in the chromosome behaviors of bouquet formation, pairing and synapsis during meiotic prophase. In S. cerevisiae, the positions of chromosomes, specific structures, and individual chromosomal loci marked by fluorescent fusion proteins are easily visualized in living cells. Time-lapse analyses have revealed rapid and varied chromosome movements throughout meiotic prophase. To facilitate the analysis of these movements, we have developed a simple, inexpensive, and efficient method to prepare sporulating cells for fluorescence microscopy. This method produces a monolayer of cells that progress from meiosis through spore formation, allows visualization of hundreds of cells in a single high-resolution frame and is suitable for most methods of fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ober, R.J., Ram, S., and Ward, E.S. (2004) Localization accuracy in single-molecule microscopy. Biophys. J. 86, 1185–1200.

    Article  PubMed  CAS  Google Scholar 

  2. Prabhat, P., Ram, S., Ward, E.S., and Ober, R.J. (2004) Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions. IEEE Trans. Nanobioscience. 3, 237–242.

    Article  PubMed  Google Scholar 

  3. Joglekar, A.P., Salmon, E.D., and Bloom, K.S. (2008) Counting kinetochore protein numbers in budding yeast using genetically encoded fluorescent proteins. Methods Cell Biol. 85, 127–151.

    Article  PubMed  CAS  Google Scholar 

  4. Hunter, N., and Kleckner, N. (2001) The single-end invasion: an asymmetric intermediate at the double- strand break to double-holliday junction transition of meiotic recombination. Cell 106, 59–70.

    Article  PubMed  CAS  Google Scholar 

  5. Fung, J.C., Rockmill, B., Odell, M., and Roeder, G.S. (2004) Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116, 795–802.

    Article  PubMed  CAS  Google Scholar 

  6. Borner, G.V., Kleckner, N., and Hunter, N. (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45.

    Article  PubMed  Google Scholar 

  7. Robinett, C.C., Straight, A., Li, G., Willhelm, C., Sudlow, G., Murray, A., and Belmont, A.S. (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700.

    Article  PubMed  CAS  Google Scholar 

  8. Straight, A.F., Belmont, A.S., Robinett, C.C., and Murray, A.W. (1996) GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608.

    Article  PubMed  CAS  Google Scholar 

  9. Hayashi, A., Ogawa, H., Kohno, K., Gasser, S.M., and Hiraoka, Y. (1998) Meiotic behaviours of chromosomes and microtubules in budding yeast: relocalization of centromeres and telomeres during meiotic prophase. Genes Cells 3, 587–601.

    Article  PubMed  CAS  Google Scholar 

  10. Goshima, G., and Yanagida, M. (2000) Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100, 619–633.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, Z., Ren, Q., Yang, H., Conrad, M.N., Guacci, V., Kateneva, A., and Dresser, M.E. (2005) Budding yeast PDS5 plays an important role in meiosis and is required for sister chromatid cohesion. Mol. Microbiol. 56, 670–680.

    Article  PubMed  CAS  Google Scholar 

  12. White, E.J., Cowan, C., Cande, W.Z., and Kaback, D.B. (2004) In vivo analysis of synaptonemal complex formation during yeast meiosis. Genetics 167, 51–63.

    Article  PubMed  CAS  Google Scholar 

  13. Scherthan, H., Wang, H., Adelfalk, C., White, E.J., Cowan, C., Cande, W.Z., and Kaback, D.B. (2007) Chromosome mobility during meiotic prophase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A 104, 16934–16939.

    Article  PubMed  CAS  Google Scholar 

  14. Lisby, M., Rothstein, R., and Mortensen, U.H. (2001) Rad52 forms DNA repair and recombination centers during S phase. Proc. Natl. Acad. Sci. U. S. A 98, 8276–8282.

    Article  PubMed  CAS  Google Scholar 

  15. He, X., Asthana, S., and Sorger, P.K. (2000) Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101, 763–775.

    Article  PubMed  CAS  Google Scholar 

  16. Belgareh, N., and Doye, V. (1997) Dynamics of nuclear pore distribution in nucleoporin mutant yeast cells. J. Cell Biol. 136, 747–759.

    Article  PubMed  CAS  Google Scholar 

  17. Straight, A.F., Marshall, W.F., Sedat, J.W., and Murray, A.W. (1997) Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277, 574–578.

    Article  PubMed  CAS  Google Scholar 

  18. Yang, H.C., and Pon, L.A. (2002) Actin cable dynamics in budding yeast. Proc. Natl. Acad. Sci. U. S. A 99, 751–756.

    Article  PubMed  CAS  Google Scholar 

  19. Yumura, S., Mori, H., and Fukui, Y. (1984) Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence. J. Cell Biol. 99, 894–899.

    Article  PubMed  CAS  Google Scholar 

  20. Kateneva, A.V., Konovchenko, A.A., Guacci, V., and Dresser, M.E. (2005) Recombination protein Tid1p controls resolution of cohesin-dependent linkages in meiosis in Saccharomyces cerevisiae. J. Cell Biol. 171, 241–253.

    Article  PubMed  CAS  Google Scholar 

  21. Lanni, F., and Baxter, G.J. (1992) Sampling theorem for square-pixel image data. Biomedical Image Processing and Three-Dimensional Microscopy SPIE 1660, 140–147.

    Google Scholar 

  22. Hediger, F., Taddei, A., Neumann, F.R., and Gasser, S.M. (2004) Methods for visualizing chromatin dynamics in living yeast. Methods Enzymol. 375, 345–365.

    Article  PubMed  CAS  Google Scholar 

  23. Gasser, S.M. (2002) Visualizing chromatin dynamics in interphase nuclei. Science 296, 1412–1416.

    Article  PubMed  CAS  Google Scholar 

  24. Schober, H., Kalck, V., Vega-Palas, M.A., Van, H.G., Sage, D., Unser, M. et al. (2008) Controlled exchange of chromosomal arms reveals principles driving telomere interactions in yeast. Genome Res. 18, 261–271.

    Article  PubMed  CAS  Google Scholar 

  25. Drubin, D.A., Garakani, A.M., and Silver, P.A. (2006) Motion as a phenotype: the use of live-cell imaging and machine visual screening to characterize transcription-dependent chromosome dynamics. BMC. Cell Biol. 7, 19.

    Article  PubMed  Google Scholar 

  26. Westphal, V., Rizzoli, S.O., Lauterbach, M.A., Kamin, D., Jahn, R., and Hell, S.W. (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249.

    Article  PubMed  CAS  Google Scholar 

  27. Garcia-Marcos, A., Sanchez, S.A., Parada, P., Eid, J., Jameson, D.M., Remacha, M. et al. (2008) Yeast ribosomal stalk heterogeneity in vivo shown by two-photon FCS and molecular brightness analysis. Biophys. J. 94, 2884–2890.

    Article  PubMed  CAS  Google Scholar 

  28. Dorn, J.F., Jaqaman, K., Rines, D.R., Jelson, G.S., Sorger, P.K., and Danuser, G. (2005) Yeast kinetochore microtubule dynamics analyzed by high-resolution three-dimensional microscopy. Biophys. J. 89, 2835–2854.

    Article  PubMed  CAS  Google Scholar 

  29. Waterman-Storer, C.M., Desai, A., Bulinski, J.C., and Salmon, E.D. (1998) Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227–1230.

    Article  PubMed  CAS  Google Scholar 

  30. Danuser, G., and Waterman-Storer, C.M. (2006) Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 361–387.

    Article  PubMed  CAS  Google Scholar 

  31. Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S. et al. (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645.

    Article  PubMed  CAS  Google Scholar 

  32. Manley, S., Gillette, J.M., Patterson, G.H., Shroff, H., Hess, H.F., Betzig, E., and Lippincott-Schwartz, J. (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157.

    Article  PubMed  CAS  Google Scholar 

  33. Kaksonen, M., Toret, C.P., and Drubin, D.G. (2005) A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320.

    Article  PubMed  CAS  Google Scholar 

  34. Conchello, J.A., and Dresser, M.E. (2007) Extended depth-of-focus microscopy via constrained deconvolution. J. Biomed. Opt. 12, 064026.

    Article  PubMed  Google Scholar 

  35. Tomita, K., and Cooper, J.P. (2007) The telomere bouquet controls the meiotic spindle. Cell 130, 113–126.

    Article  PubMed  CAS  Google Scholar 

  36. Conrad, M.N., Lee, C.Y., Chao, G., Shinohara, M., Kosaka, H., Shinohara, A. et al. (2008) Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3 and CSM4 and is modulated by recombination.Cell 133, 1175–1187.

    Article  PubMed  CAS  Google Scholar 

  37. Prabhat, P., Gan, Z., Chao, J., Ram, S., Vaccaro, C., Gibbons, S. et al. (2007) Elucidation of intracellular recycling pathways leading to exocytosis of the Fc receptor, FcRn, by using multifocal plane microscopy. Proc. Natl. Acad. Sci. U. S. A 104, 5889–5894.

    Article  PubMed  CAS  Google Scholar 

  38. Agard, D.A., Hiraoka, Y., Shaw, P., and Sedat, J.W. (1989) Fluorescence microscopy in three dimensions. Methods Cell Biol. 30, 353–377.

    Article  PubMed  CAS  Google Scholar 

  39. De, M., Jr., Kessler, P., Dompierre, J., Cordelieres, F.P., Dieterlen, A., Vonesch, J.L., and Sibarita, J.B. (2008) Fast 4D Microscopy. Methods Cell Biol. 85, 83–112.

    Article  Google Scholar 

  40. Russ, J.C. (2006) The Image Processing Handbook. Boca Raton, FL.: CRC Press.

    Book  Google Scholar 

  41. Clendenon, J.L., Byars, J.M., and Hyink, D.P. (2006) Image processing software for 3D light microscopy. Nephron Exp. Nephrol. 103, e50–e54.

    Article  PubMed  Google Scholar 

  42. Dorn, J.F., Danuser, G., and Yang, G. (2008) Computational processing and analysis of dynamic fluorescence image data. Methods Cell Biol. 85, 497–538.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Ben Fowler (Oklahoma Medical Research Foundation Core Facility for Imaging), Margaret Clarke and C.-Y. Lee for advice and technical help in developing the methods. This work was supported by grants NSF #MCB 98-08000 and OCAST #HR07-026.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dresser, M.E. (2009). Time-Lapse Fluorescence Microscopy of Saccharomyces cerevisiae in Meiosis. In: Keeney, S. (eds) Meiosis. Methods in Molecular Biology, vol 558. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-103-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-103-5_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-102-8

  • Online ISBN: 978-1-60761-103-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics