Skip to main content

Epigenetic Variation

  • Protocol
  • First Online:
Genetic Epidemiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 713))

  • 3457 Accesses

Abstract

Epigenetics is a fast moving field and our understanding of epigenetic mechanisms has dramatically improved in recent decades. We present the role that epigenetics plays in genomic control in humans; the molecular basis of this control and the role that epigenetic aberrations play in the aetiology of human disease. We outline some of the laboratory techniques for characterising epigenetic variation from methylation analysis of a single CpG to characterising histone variation across extensive genomic regions. The fields of computational epigenetics and population epigenetics have recently emerged and we discuss developments in statistical methods that use DNA methylation as biomarker for the prediction of disease. Finally we describe how DNA methylation errors that occur during somatic cell divisions have been used as a molecular clock that allows inferences about cell population histories to be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rollins RA, Haghighi F, Edwards JR, Das R, Zhang MQ, Ju J, Bestor TH. Large-scale structure of genome methylation patterns. Genome Res. 2006; 16:157–163.

    Article  PubMed  CAS  Google Scholar 

  2. Kim TH, Barrera LI, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B. A high resolution map of active promoters in the human genome. Nature 2005; 436:876–880.

    Article  PubMed  CAS  Google Scholar 

  3. Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW Jones PA. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol. Cell. Biol. 2002; 22:480–491.

    Article  PubMed  CAS  Google Scholar 

  4. Comb M and Goodman HM. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 1990; 18:3975–3982.

    Article  PubMed  CAS  Google Scholar 

  5. Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The methyl-CpG- binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 2003; 278:4035–4040.

    Article  PubMed  CAS  Google Scholar 

  6. Yang XJ and Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 1996; 382:319–324.

    Article  PubMed  CAS  Google Scholar 

  7. Sun ZWand Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 2002; 48:104–108.

    Google Scholar 

  8. Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, Doderlein G, Maltry N, Wu W, Lyko F, Niehrs C. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 2007; 445:671–675.

    Article  PubMed  CAS  Google Scholar 

  9. Schwarz YB and Pirrotta V. Molecular mechanisms of polycomb silencing. In ‘Epigenetics’ edited by J. Tost; 2008, Caister Academic Press, Norfolk, England.

    Google Scholar 

  10. Chan C-S, Rastelli L, Pirrotta V. A polycomb response element in Ubx gene that determines an epigenetically inherited state of repression. EMBO J. 1994; 13:2553–2564.

    PubMed  CAS  Google Scholar 

  11. Kassis JA. Pairing sensitive silencing, polycomb group response elements and transposon homing in Drosophila. Adv. Genet. 2002; 246:421–438.

    Article  Google Scholar 

  12. Kahn TG, Schwartz YB, Dellino GI, Pirrotta V. Polycomb complexes and the propagation of the methylation mark at the Drosophila Ubx gene. J. Biol. Chem. 2006; 281:29064–29075.

    Article  PubMed  CAS  Google Scholar 

  13. Esteve Po, Chin HG, Smallwood A, Feehery GR, Gangisetty O, Karpf AR, Carey MF, Pradharan S. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 2006; 20:3089–3103.

    Article  Google Scholar 

  14. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa J-P, Markowitz JK, Willson JKV, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. U.S.A. 1998; 95:96870–96875.

    Article  Google Scholar 

  15. Iida T, Suetake I, Tajima S, Morioka H, Ohta S, Obuse C, Tsurimoto T. PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA. Genes Cells 2002; 7:997–1007.

    Article  PubMed  CAS  Google Scholar 

  16. Goyal R, Reinhardt R, Jeltsch A. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res. 2006; 34:1183–1188.

    Article  Google Scholar 

  17. Margot JB, Cardaso MC, Leonhardt H. Mammalian DNA methyltransferases show different subnuclear distributions. J. Cell. Biochem. 2001; 83:373–379.

    Article  PubMed  CAS  Google Scholar 

  18. Jair K-W, Bachman KE, Suzuki H, Ting AH, Rhee I, Yen RW-C, Baylin SB, Schuebel KE. De novo CpG island methylation in human cancer cells. Cancer Res. 2006; 66:682–692.

    Article  PubMed  CAS  Google Scholar 

  19. Chan TL, Yuen St, LKong Ck, Chan YW, Chan YS, Ng WF, Tsui WY, Lo MW, Tam WY, Li VS, Leung SY. Heritable germline epimutations of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat. Genet. 2006; 38:1178–1183.

    Article  PubMed  CAS  Google Scholar 

  20. Tufarelli C, Stanley JA, Garrick D, Sharpe JA, Ayyub H, Wood WG, Higgs DR. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat. Gent. 2003; 34:157–165.

    Article  Google Scholar 

  21. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, Yu W, Rongione MA, Ekström TJ, Harris TB, Launer LJ, Eiriksdottir G, Leppert MF, Sapienza C, Gudnason V, Feinberg AP. Intra-individual change over time in DNA methylation with familial clustering. JAMA 2008; 24:2877–2883.

    Article  Google Scholar 

  22. Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GHT, Wong AHC, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C, McRae AF, Visscher PM, Montgomery GW, Gottesman II, Martin NG, Petronis A. DNA methylation profiles in monozygotic and dizygotic twins. Nat. Genet. 2009; 41:240–245.

    Article  PubMed  CAS  Google Scholar 

  23. Chen C, Yang MC, Yang TP. Evidence that silencing of the HPRT promoter by DNA methylation is mediated by critical CpG sites. J. Biol. Chem. 2001; 276:320–328.

    Article  PubMed  CAS  Google Scholar 

  24. Cameron EE, Baylin SB, Herman JG. P15iINK4B CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood 1999; 94:2445–2451.

    PubMed  CAS  Google Scholar 

  25. Jones PA and Baylin SB. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 2002; 3:415–428.

    Article  PubMed  CAS  Google Scholar 

  26. Yates DR, Rehman I, Abbod MF, Meuth M, Cross SS, Linkens DA, Hamdy FC, Catto JWF. Promoter hypermethylation identifies progression risk in bladder cancer. Clin. Cancer Res. 2007; 13:2046–2053.

    Article  PubMed  CAS  Google Scholar 

  27. Jarmalaite S, Jankevicius F, Kurgonaite K, Suziedelis K, Mutanen P, Husgafvel-Pursiainen K. Promoter hypermethylation in tumour suppressor genes shows association with stage, grade and invasiveness of bladder cancer. Oncology 2008; 75:145–151.

    Article  PubMed  CAS  Google Scholar 

  28. Marsit CJ, Kim DH, Liu M, Hinds PW, Wiencke JK, Nelson HH, Kelsey KT. Hypermethylation of RASSF1A and BLU tumor suppressor genes in non-small cell lung cancer: implications for tobacco smoking during adolescence. Int J Cancer 2005; 114:219–223.

    Article  PubMed  CAS  Google Scholar 

  29. Du Y, Carling T, Fang W, Piao JZ, Sheu JC, Huang S. Hypermethylation in human cancers of the RIZ1 tumour suppressor gene, a member of a histone/protein methyltransferase superfamily. Cancer Res. 2001; 61:8094–8099.

    PubMed  CAS  Google Scholar 

  30. Catto JWF, Azzouzi AR, Rehman I, Feeley KM, Cross S, Amira N, Fromont G, Sibnony M, Cussenot O, Meuth M, Hamdy FC. Promoter hypermethylation is associated with tumour location stage and subsequent progression in transitional cell carcinoma. J. Clin. Oncol. 2005; 23:2903–2910.

    Article  CAS  Google Scholar 

  31. Chen J, Röcken C, Lofton-Day C, Schulz HU, Müller O, Kutzner N, Malfertheiner P, Ebert MPA. Molecular analysis of APC promoter methylation and protein expression in colorectal cancer metastasis. Carcinogenesis 2005; 26:37–43.

    Article  PubMed  Google Scholar 

  32. Handa V and Jeltsch A. Profound flanking sequence preference of Dnmt3a and Dnmt3b mammalian DNA methyltransferases shape the human epigenome. J. Mol. Biol. 2005; 348:1103–1112.

    Article  PubMed  CAS  Google Scholar 

  33. Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM. DNA motifs associated with aberrant CpG island methylation. Genomics 2006; 87:572–579.

    Article  PubMed  CAS  Google Scholar 

  34. Ohm J, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W, Berman DM, Jenuwin T, Pruitt K, Sharkis SJ, Watkins ND, Hermann JG, Baylin SB. A stem cell-like chromatin pattern may predispose tumour suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 2007; 39(2):237–242.

    Article  PubMed  CAS  Google Scholar 

  35. Issa JP. CpG island methylator phenotype in cancer. Nat. Rev. Cancer 2004; 4:988–993.

    Article  PubMed  CAS  Google Scholar 

  36. Ushijima T, Watanabe N, Shimizu K, Miyamoto K, Sugimura T, Kaneda A. Decreased fidelity in repeating CPG methylation patterns in cancer cells. Cancer Res. 2005; 65:11–17.

    PubMed  CAS  Google Scholar 

  37. Grady WM, Willis J, Guildford PJ, Dunbier AK, Toro TT, Lynch H, Wiesner G, Ferguson K, Eng C, Park JG, Kim SJ, Markowitz S. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat. Genet. 2000; 26:16–17.

    Article  PubMed  CAS  Google Scholar 

  38. Hermann JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa J-P, Markowitz S, Wilson JK, Hamilton Sr, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB. Incidence and functional consequences of hMLH1 promoter hypermathylation in colerectal carcinomas. Proc. Natl. Acad. Sci. USA 1998; 95:6870-6875.

    Article  Google Scholar 

  39. Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, Minucci S, Pelicci PG. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002; 295:1079–1082.

    Article  PubMed  Google Scholar 

  40. Meltzer PS. Cancer genomics: small RNAs with big impacts. Nature 2005; 435:745–746.

    Article  PubMed  CAS  Google Scholar 

  41. Mockler TC, Chan S, Sundaresan A, Chen H, Jacobsen SE, Ecker JR. Applications of DNA tiling arrays for whole-genome analysis. Genomics 2005; 85:1–15.

    Article  PubMed  CAS  Google Scholar 

  42. Lo YM, Wong IH, Zhang J, Tein MS, Ng MH, Hjelm NM. Quantitative analysis of aberrant p16 methylation using real-time quantitative methylation-specific polymerase chain reaction. Cancer Res. 1999; 59:3899–3903.

    PubMed  CAS  Google Scholar 

  43. Laird CD, Pleasant ND, Clark AD, Sneeden JL, Hassan KM, Manley NC, Vary JC Jr, Morgan T, Hansen RS, Stöger R. Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules. Proc. Natl. Acad. Sci. U.S.A. 2004; 101:204–209.

    Article  PubMed  CAS  Google Scholar 

  44. Lauchenbruch PA. Analysis of data with an excess of zeros. Stat Methods Med Res 2002; 11:297–302.

    Article  Google Scholar 

  45. Neuhauser M, Boes T, Jockel K-H. Two-part permutation tests for DNA methylation and microarray data. BMC Bioinformatics 2005; 6:35.

    Article  PubMed  Google Scholar 

  46. Virmani AK, Tsou JA, Siegmund KD, Shen LYC, Long TI, Laird PW, Gazdar AF, Laird-Offringa IA. Hierarchical clustering of lung cancer cell lines using DNA methylation markers. Cancer Epidemiol. Biomarkers Prev. 2002; 11:291–297.

    PubMed  CAS  Google Scholar 

  47. Model F, Adorjan P, Olek A, Piepenbrock C. Feature selection for DNA methylation based cancer classification. Bioinformatics 2001; 17:S157–S164.

    Article  PubMed  Google Scholar 

  48. Catto JWF, Linkens D, Abbod MF, Chen M, Burton JL, Feeley KM, Hamdy FC. Artificial intelligence in predicting bladder cancer ­outcome: a comparison of neuro-fuzzy modelling and artificial neural networks. Clin. Cancer Res. 2003; 9:4172–4177.

    PubMed  Google Scholar 

  49. Siegmund KD, Laird PW, Laird-Offringa IA. A comparison of cluster analysis methods using DNA methylation data. Bioinformatics 2004; 20:1896–1904.

    Article  PubMed  CAS  Google Scholar 

  50. Marjoram P, Chang J, Laird PW, Siegmund KD. Cluster analysis for DNA methylation profiles having a detection threshold. BMC Bioinformatics 2006; 7:361.

    Article  PubMed  Google Scholar 

  51. Brena RM, Huang THM, Plass C. Toward a human epigenome. Nat. Genet. 2006; 38:1359–1360.

    Article  PubMed  CAS  Google Scholar 

  52. Yatabe Y, Tavare S, Shibata D. Investigating stem cells in human colon by using methylation patterns. Proc. Natl. Acad. Sci. U.S.A. 2001; 98:10839–10844.

    Article  PubMed  CAS  Google Scholar 

  53. Walters K. Colonic stem cell data is consistent with the immortal model of stem cell division under non-random strand segregation. Cell Prolif. 2009; 42:339–347.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Walters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Walters, K. (2011). Epigenetic Variation. In: Teare, M. (eds) Genetic Epidemiology. Methods in Molecular Biology, vol 713. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-416-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-416-6_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-415-9

  • Online ISBN: 978-1-60327-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics