Skip to main content

Microfluidic Manufacturing of Multitargeted PLGA/PEG Nanoparticles for Delivery of Taxane Chemotherapeutics

  • Protocol
  • First Online:
Drug Delivery Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2059))

Abstract

Taxane chemotherapeutics have played a key role in the treatment of various types of cancer throughout the past years. However, the drawbacks inherent to the pharmaceutical formulation of taxanes are still a reality and mainly due to the low aqueous solubility of these medicines, as well as to the nontargeted therapy and consequent side effects. Nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) have sparked broad interest in this field and demonstrated capacity of improving taxanes’ formulation. If, in one hand, the PLGA core of these NPs is able to solubilize drugs, on the other hand, the PEG shell promotes immune escape and presents chemical end groups for the attachment of targeting ligands. Advances in the design of these nanosystems resulted in the development of multitargeted PLGA/PEG NPs achieved by dual-ligand functionalization. The multitargeting offers a promising alternative to the delivery of taxanes across successive cell types or compartments and to the synergetic exploitation of more than one transporter on the cell surface. Besides the upgrade in the design of multitargeted PLGA/PEG NPs, their manufacturing has also evolved from bulk assembly to continuous-flow, high-throughput technologies such as microfluidics. This technology relies on microchannel platforms described to enable the production of large-scale batches of NPs in a better time-saving manner, with higher drug loading, reproducibility, and lower polydispersity. Herein, a detailed microfluidic method for the preparation of multitargeted, taxane-loaded PLGA/PEG NPs is described. Focus is given to the setting up of the microfluidic system and conditions required to manufacture these NPs by using polymers of PLGA and PEG previously elsewhere functionalized with two generic targeting ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Perez EA (2009) Microtubule inhibitors: differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther 8(8):2086–2095. https://doi.org/10.1158/1535-7163.Mct-09-0366

    Article  CAS  PubMed  Google Scholar 

  2. Gligorov J, Lotz JP (2004) Preclinical pharmacology of the taxanes: implications of the differences. Oncologist 9(Suppl 2):3–8

    Article  CAS  Google Scholar 

  3. Elhissi A, Mahmood R, Parveen I, Vali A, Ahmed W, Jackson MJ (2018) Taxane formulations: from plant to clinic. In: Jackson MJ, Ahmed W (eds) Micro and nanomanufacturing volume II. Springer, Cham, pp 23–33. https://doi.org/10.1007/978-3-319-67132-1_2

    Chapter  Google Scholar 

  4. Yared JA, Tkaczuk KHR (2012) Update on taxane development: new analogs and new formulations. Drug Des Devel Ther 6:371–384. https://doi.org/10.2147/DDDT.S28997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harrison MR, Holen KD, Liu G (2009) Beyond taxanes: a review of novel agents that target mitotic tubulin and microtubules, kinases, and kinesins. Clin Adv Hematol Oncol 7(1):54–64

    PubMed  PubMed Central  Google Scholar 

  6. Gaucher G, Marchessault RH, Leroux J-C (2010) Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release 143(1):2–12. https://doi.org/10.1016/j.jconrel.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  7. Feng L, Mumper RJ (2013) A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett 334(2):157–175. https://doi.org/10.1016/j.canlet.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  8. Reul R, Renette T, Bege N, Kissel T (2011) Nanoparticles for paclitaxel delivery: a comparative study of different types of dendritic polyesters and their degradation behavior. Int J Pharm 407(1):190–196. https://doi.org/10.1016/j.ijpharm.2011.01.028

    Article  CAS  PubMed  Google Scholar 

  9. Enlow EM, Luft JC, Napier ME, DeSimone JM (2011) Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings. Nano Lett 11(2):808–813. https://doi.org/10.1021/nl104117p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rezvantalab S, Drude NI, Moraveji MK, Güvener N, Koons EK, Shi Y, Lammers T, Kiessling F (2018) PLGA-based nanoparticles in cancer treatment. Front Pharmacol 9:1260–1260. https://doi.org/10.3389/fphar.2018.01260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rafiei P, Haddadi A (2017) Pharmacokinetic consequences of PLGA nanoparticles in docetaxel drug delivery. Pharm Nanotechnol 5(1):3–23. https://doi.org/10.2174/2211738505666161230110108

    Article  CAS  PubMed  Google Scholar 

  12. Khalil NM, TCFd N, Casa DM, Dalmolin LF, ACd M, Hoss I, Romano MA, Mainardes RM (2013) Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces 101:353–360. https://doi.org/10.1016/j.colsurfb.2012.06.024

    Article  CAS  PubMed  Google Scholar 

  13. Kroon J, Kooijman S, Cho N-J, Storm G, van der Pluijm G (2016) Improving taxane-based chemotherapy in castration-resistant prostate cancer. Trends Pharmacol Sci 37(6):451–462. https://doi.org/10.1016/j.tips.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  14. Song Z, Feng R, Sun M, Guo C, Gao Y, Li L, Zhai G (2011) Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci 354(1):116–123. https://doi.org/10.1016/j.jcis.2010.10.024

    Article  CAS  PubMed  Google Scholar 

  15. Garg S, Heuck G, Ip S, Ramsay E (2016) Microfluidics: a transformational tool for nanomedicine development and production. J Drug Target 24(9):821–835. https://doi.org/10.1080/1061186x.2016.1198354

    Article  CAS  PubMed  Google Scholar 

  16. Martins C, Araújo F, Gomes MJ, Fernandes C, Nunes R, Li W, Santos HA, Borges F, Sarmento B (2018) Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. Eur J Pharm Biopharm. https://doi.org/10.1016/j.ejpb.2018.01.014

    Article  CAS  Google Scholar 

  17. Martins JP, Torrieri G, Santos HA (2018) The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert Opin Drug Deliv 15(5):469–479. https://doi.org/10.1080/17425247.2018.1446936

    Article  CAS  PubMed  Google Scholar 

  18. Gdowski A, Johnson K, Shah S, Gryczynski I, Vishwanatha J, Ranjan A (2018) Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. J Nanobiotechnol 16(1):12–12. https://doi.org/10.1186/s12951-018-0339-0

    Article  CAS  Google Scholar 

  19. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561. https://doi.org/10.1039/c2cs15327k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martins C, Sousa F, Araújo F, Sarmento B (2017) Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater 7:1701035. https://doi.org/10.1002/adhm.201701035

    Article  CAS  Google Scholar 

  21. Mout R, Moyano DF, Rana S, Rotello VM (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41(7):2539–2544. https://doi.org/10.1039/c2cs15294k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feng L, Zhu C, Yuan H, Liu L, Lv F, Wang S (2013) Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev 42(16):6620–6633. https://doi.org/10.1039/C3CS60036J

    Article  CAS  PubMed  Google Scholar 

  23. Bastakoti BP, Liu Z (2017) Multifunctional polymeric micelles as therapeutic nanostructures: targeting, imaging, and triggered release. In: Ficai A, Grumezescu AM (eds) Nanostructures for cancer therapy. Elsevier, Amsterdam, pp 261–283. https://doi.org/10.1016/B978-0-323-46144-3.00010-6

    Chapter  Google Scholar 

  24. Shi J, Xiao Z, Kamaly N, Farokhzad OC (2011) Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res 44(10):1123–1134. https://doi.org/10.1021/ar200054n

    Article  CAS  PubMed  Google Scholar 

  25. Pfister D, Morbidelli M (2014) Process for protein PEGylation. J Control Release 180:134–149. https://doi.org/10.1016/j.jconrel.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Xianyu Y, Wu J, Yin B, Jiang X (2016) Click chemistry-mediated nanosensors for biochemical assays. Theranostics 6(7):969–985. https://doi.org/10.7150/thno.14856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Q-s X, H-m D, Ma Y-q (2017) Can dual-ligand targeting enhance cellular uptake of nanoparticles? Nanoscale 9(26):8982–8989. https://doi.org/10.1039/C7NR01020F

    Article  Google Scholar 

  28. Zhu Y, Feijen J, Zhong Z (2018) Dual-targeted nanomedicines for enhanced tumor treatment. Nano Today 18:65–85. https://doi.org/10.1016/j.nantod.2017.12.007

    Article  CAS  Google Scholar 

  29. Gao H (2017) Perspectives on dual targeting delivery systems for brain tumors. J Neuroimmune Pharmacol 12(1):6–16. https://doi.org/10.1007/s11481-016-9687-4

    Article  PubMed  Google Scholar 

  30. Xiong L, Du X, Kleitz F, Qiao SZ (2015) Cancer-cell-specific nuclear-targeted drug delivery by dual-ligand-modified mesoporous silica nanoparticles. Small 11(44):5919–5926. https://doi.org/10.1002/smll.201501056

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Hui Y, Ran R, Yang G-Z, Wibowo D, Wang H-F, Middelberg APJ, Zhao C-X (2018) Synergetic combinations of dual-targeting ligands for enhanced in vitro and in vivo tumor targeting. Adv Healthc Mater 7(15):1800106. https://doi.org/10.1002/adhm.201800106

    Article  CAS  Google Scholar 

  32. Elias DR, Poloukhtine A, Popik V, Tsourkas A (2013) Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine 9(2):194–201. https://doi.org/10.1016/j.nano.2012.05.015

    Article  CAS  PubMed  Google Scholar 

  33. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42(3):1147–1235. https://doi.org/10.1039/c2cs35265f

    Article  CAS  PubMed  Google Scholar 

  34. Khmelnitsky YL, Belova AB, Levashov AV, Mozhaev VV (1991) Relationship between surface hydrophilicity of a protein and its stability against denaturation by organic solvents. FEBS Lett 284(2):267–269

    Article  CAS  Google Scholar 

  35. Sousa F, Fonte P, Cruz A, Kennedy PJ, Pinto IM, Sarmento B (2018) Polyester-based nanoparticles for the encapsulation of monoclonal antibodies. In: Picanço-Castro V, Swiech K (eds) Recombinant glycoprotein production, vol 1674. Springer, New York, NY, pp 239–253. https://doi.org/10.1007/978-1-4939-7312-5_20

    Chapter  Google Scholar 

  36. Clark AJ, Davis ME (2015) Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci U S A 112(40):12486–12491. https://doi.org/10.1073/pnas.1517048112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsumoto A, Matsukawa Y, Suzuki T, Yoshino H (2005) Drug release characteristics of multi-reservoir type microspheres with poly(dl-lactide-co-glycolide) and poly(dl-lactide). J Control Release 106(1):172–180. https://doi.org/10.1016/j.jconrel.2005.03.026

    Article  CAS  PubMed  Google Scholar 

  38. Dragan U, Magdalena S (2009) Poly(lactide-co-glycolide)-based micro and nanoparticles for the controlled drug delivery of vitamins. Curr Nanosci 5(1):1–14. https://doi.org/10.2174/157341309787314566

    Article  Google Scholar 

  39. Kennedy PJ, Perreira I, Ferreira D, Nestor M, Oliveira C, Granja PL, Sarmento B (2018) Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles. Eur J Pharm Biopharm 127:366–370. https://doi.org/10.1016/j.ejpb.2018.03.005

    Article  CAS  PubMed  Google Scholar 

  40. Chiesa E, Dorati R, Pisani S, Conti B, Bergamini G, Modena T, Genta I (2018) The microfluidic technique and the manufacturing of polysaccharide nanoparticles. Pharmaceutics 10(4). https://doi.org/10.3390/pharmaceutics10040267

    Article  Google Scholar 

  41. Lin J, Pan X, Yin Z, Ku X (2016) Solution of general dynamic equation for nanoparticles in turbulent flow considering fluctuating coagulation. Appl Math Mech 37(10):1275–1288. https://doi.org/10.1007/s10483-016-2131-9

    Article  Google Scholar 

  42. Liu D, Zhang H, Fontana F, Hirvonen J, Santos HA (2017) Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab Chip 17(11):1856–1883. https://doi.org/10.1039/c7lc00242d

    Article  CAS  PubMed  Google Scholar 

  43. Stroock AD, Dertinger SK, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651. https://doi.org/10.1126/science.1066238

    Article  CAS  PubMed  Google Scholar 

  44. Sharp KV, Adrian RJ (2004) Transition from laminar to turbulent flow in liquid filled microtubes. Exp Fluids 36(5):741–747. https://doi.org/10.1007/s00348-003-0753-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is a result of the project NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The work was also financed by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). C.M. gratefully acknowledges FCT—Fundação para a Ciência e a Tecnologia, Portugal, for financial support (grant SFRH/BD/137946/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sarmento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Martins, C., Sarmento, B. (2020). Microfluidic Manufacturing of Multitargeted PLGA/PEG Nanoparticles for Delivery of Taxane Chemotherapeutics. In: Jain, K. (eds) Drug Delivery Systems. Methods in Molecular Biology, vol 2059. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9798-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9798-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9797-8

  • Online ISBN: 978-1-4939-9798-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics