Skip to main content

Micromass Methods for the Evaluation of Developmental Toxicants

  • Protocol
  • First Online:
Developmental Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1965))

  • 1578 Accesses

Abstract

Chick embryonic heart has recently been utilized as a model to create a micromass (MM) culturing system. The aim was to overcome the ethical barriers arising from testing the embryotoxicity of chemicals using human embryonic cells. The system represents a valuable tool to study the ability of chemicals to interfere with various embryonic developmental processes such as cellular communication, differentiation, cellular activity, and proliferation, where the disturbance any of them could result in maldevelopment. The system can also be utilized to investigate ROS production and expression of several transmembrane proteins to study their roles in chemical-induced teratogenicity or embryotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flint OP, Orton TC (1984) An in vitro assay for teratogens with cultures of rat embryo midbrain and limb bud cells. Toxicol Appl Pharmacol 76(2):383–395

    Article  CAS  PubMed  Google Scholar 

  2. Doyle D, Kapron CM (2002) Inhibition of cell differentiation by manganese chloride in micromass cultures of mouse embryonic limb bud cells. Toxicol In Vitro 16(2):101–106

    Article  CAS  PubMed  Google Scholar 

  3. Parsons JF, Rockley J, Richold M (1990) In vitro micromass teratogen test: Interpretation of results from a blind trial of 25 compounds using three separate criteria. Toxicol In Vitro 4(4–5):609–611

    Article  CAS  PubMed  Google Scholar 

  4. Hurst HS, Clothier RH, Pratten M (2007) An evaluation of a novel chick cardiomyocyte micromass culture assay with two teratogens/embryotoxins associated with heart defects. Altern Lab Anim 35(5):505–514

    CAS  PubMed  Google Scholar 

  5. Hurst H, Clothier RH, Pratten M (2009) An evaluation of the chick cardiomyocyte micromass system for identification of teratogens in a blind trial. Reprod Toxicol 28(4):503–510. https://doi.org/10.1016/j.reprotox.2009.07.003

    Article  CAS  PubMed  Google Scholar 

  6. Piersma AH (2006) Alternative methods for developmental toxicity testing. Basic Clin Pharmacol Toxicol 98:427–431

    Article  CAS  PubMed  Google Scholar 

  7. Faustman EM (1988) Short-term tests for teratogens. Mutat Res 205(1–4):355–384

    Article  CAS  PubMed  Google Scholar 

  8. Castoldi AF, Johansson C, Onishchenko N, Coccini T, Roda E, Vahter M, Ceccatelli S, Manzo L (2008) Human developmental neurotoxicity of methylmercury: impact of variables and risk modifiers. Regul Toxicol Pharmacol 51(2):201–214. https://doi.org/10.1016/j.yrtph.2008.01.016

    Article  CAS  PubMed  Google Scholar 

  9. Harris C, Hansen JM (eds) (2012) Methods in molecular biology. Developmental toxicology methods and protocols. Springer Science+Business Media, New York Dordrecht Heidelberg London. https://doi.org/10.1007/978-1-61779-867-2

    Book  Google Scholar 

  10. Talpur AD, Ikhwanuddin M, Ambok Bolong A-M (2013) Nutritional effects of ginger (Zingiber officinale Roscoe) on immune response of Asian sea bass, Lates calcarifer (Bloch) and disease resistance against Vibrio harveyi. Aquaculture 400-401:46–52. https://doi.org/10.1016/j.aquaculture.2013.02.043

    Article  CAS  Google Scholar 

  11. Tiran D (2012) Ginger to reduce nausea and vomiting during pregnancy: evidence of effectiveness is not the same as proof of safety. Complement Ther Clin Pract 18(1):22–25. https://doi.org/10.1016/j.ctcp.2011.08.007

    Article  PubMed  Google Scholar 

  12. Viljoen E, Visser J, Koen N, Musekiwa A (2014) A systematic review and meta-analysis of the effect and safety of ginger in the treatment of pregnancy-associated nausea and vomiting. Nutr J 13:20. https://doi.org/10.1186/1475-2891-13-20

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wilkinson JM (2000) What do we know about herbal morning sickness treatments? A literature survey. Midwifery 16:224–228

    Article  CAS  PubMed  Google Scholar 

  14. Jacobsgaard H (2008) The pharmacists request that pregnant women consult physicians prior to GraviFrisk [article in Danish]. Ugeskr Laeger 170(10):876

    Google Scholar 

  15. Wang S, Zhang C, Yang G, Yang Y (2014) Biological properties of 6-gingerol: a brief review. Nat Prod Commun 9(7):1027–1030

    CAS  PubMed  Google Scholar 

  16. Ali BH, Blunden G, Tanira MO, Nemmar A (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46(2):409–420. https://doi.org/10.1016/j.fct.2007.09.085

    Article  CAS  PubMed  Google Scholar 

  17. Abdel-Aziz H, Windeck T, Ploch M, Verspohl EJ (2006) Mode of action of gingerols and shogaols on 5-HT3 receptors: binding studies, cation uptake by the receptor channel and contraction of isolated guinea-pig ileum. Eur J Pharmacol 530(1–2):136–143. https://doi.org/10.1016/j.ejphar.2005.10.049

    Article  CAS  PubMed  Google Scholar 

  18. Lien HC, Sun WM, Chen YH, Kim H, Hasler W, Owyang C (2003) Effects of ginger on motion sickness and gastric slow-wave dysrhythmias induced by circular vection. Am J Physiol Gastrointest Liver Physiol 284(3):G481–G489. https://doi.org/10.1152/ajpgi.00164.2002

    Article  CAS  PubMed  Google Scholar 

  19. Pertz HH, Lehmann J, Roth-Ehrang R, Elz S (2011) Effects of ginger constituents on the gastrointestinal tract: role of cholinergic M3 and serotonergic 5-HT3 and 5-HT4 receptors. Planta Med 77(10):973–978. https://doi.org/10.1055/s-0030-1270747

    Article  CAS  PubMed  Google Scholar 

  20. Pongrojpaw D, Somprasit C, Chanthasenanont A (2007) A randomized comparison of ginger and dimenhydrinate in the treatment of nausea and vomiting in pregnancy. J Med Assoc Thail 90(9):1703–1709

    Google Scholar 

  21. Kim EC, Min JK, Kim TY, Lee SJ, Yang HO, Han S, Kim YM, Kwon YG (2005) [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochem Biophys Res Commun 335(2):300–308. https://doi.org/10.1016/j.bbrc.2005.07.076

    Article  CAS  PubMed  Google Scholar 

  22. Susan E (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  Google Scholar 

  23. Chakraborty D, Bishayee K, Ghosh S, Biswas R, Mandal SK, Khuda-Bukhsh AR (2012) [6]-Gingerol induces caspase 3 dependent apoptosis and autophagy in cancer cells: drug-DNA interaction and expression of certain signal genes in HeLa cells. Eur J Pharmacol 694(1–3):20–29. https://doi.org/10.1016/j.ejphar.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  24. Yang G, Zhong L, Jiang L, Geng C, Cao J, Sun X, Ma Y (2010) Genotoxic effect of 6-gingerol on human hepatoma G2 cells. Chem Biol Interact 185(1):12–17. https://doi.org/10.1016/j.cbi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  25. Lee HS, Seo EY, Kang NE, Kim WK (2008) [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J Nutr Biochem 19(5):313–319. https://doi.org/10.1016/j.jnutbio.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  26. Lin CB, Lin CC, Tsay GJ (2012) 6-Gingerol Inhibits Growth of Colon Cancer Cell LoVo via Induction of G2/M Arrest. eCAM 2012:326096. https://doi.org/10.1155/2012/326096

    Article  PubMed  Google Scholar 

  27. Heitmann K, Nordeng H, Holst L (2013) Safety of ginger use in pregnancy: results from a large population-based cohort study. Eur J Clin Pharmacol 69(2):269–277. https://doi.org/10.1007/s00228-012-1331-5

    Article  PubMed  Google Scholar 

  28. Portnoi G, Chng LA, Karimi-Tabesh L, Koren G, Tan MP, Einarson A (2003) Prospective comparative study of the safety and effectiveness of ginger for the treatment of nausea and vomiting in pregnancy. Am J Obstet Gynecol 189(5):1374–1377

    Article  CAS  PubMed  Google Scholar 

  29. Leung KW, Wong AS (2013) Ginseng and male reproductive function. Spermatogenesis 3(3):e26391. https://doi.org/10.4161/spmg.26391

    Article  PubMed  PubMed Central  Google Scholar 

  30. Poindexter BJ, Allison AW, Bick RJ, Dasgupta A (2006) Ginseng: cardiotonic in adult rat cardiomyocytes, cardiotoxic in neonatal rat cardiomyocytes. Life Sci 79(25):2337–2344. https://doi.org/10.1016/j.lfs.2006.07.038

    Article  CAS  PubMed  Google Scholar 

  31. Jiang R, Dong J, Li X, Du F, Jia W, Xu F, Wang F, Yang J, Niu W, Li C (2015) Molecular mechanisms governing different pharmacokinetics of ginsenosides and potential for ginsenoside-perpetrated herb-drug interactions on OATP1B3. Br J Pharmacol 172(4):1059–1073. https://doi.org/10.1111/bph.12971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie CL, Wang WW, Xue XD, Zhang SF, Gan J, Liu ZG (2015) A systematic review and meta-analysis of Ginsenoside-Rg1 (G-Rg1) in experimental ischemic stroke. Sci Rep 5:7790. https://doi.org/10.1038/srep07790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu JM, Yao Q, Chen C (2009) Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 7(3):293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karmazyn M, Moey M, Gan XT (2011) Therapeutic potential of ginseng in the management of cardiovascular disorders. Drugs 71(15):1989–2008. https://doi.org/10.2165/11594300-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  35. Liu P, Yin H, Xu Y, Zhang Z, Chen K, Li Y (2006) Effects of ginsenoside Rg1 on postimplantation rat and mouse embryos cultured in vitro. Toxicol In Vitro 20(2):234–238. https://doi.org/10.1016/j.tiv.2005.06.029

    Article  CAS  PubMed  Google Scholar 

  36. Pratten M, Ahir BK, Smith-Hurst H, Memon S, Mutch P, Cumberland P (2012) Primary cell and micromass culture in assessing developmental toxicity. Methods Mol Biol 889:115–146. https://doi.org/10.1007/978-1-61779-867-2_9

    Article  CAS  PubMed  Google Scholar 

  37. Rumbold A, Crowther CA (2005) Vitamin C supplementation in pregnancy. Cochrane Database Syst Rev (2):CD004072. https://doi.org/10.1002/14651858.CD004072.pub2

  38. Heller M, Burd L (2014) Review of ethanol dispersion, distribution, and elimination from the fetal compartment. Birth Defects Res A Clin Mol Teratol 100(4):277–283. https://doi.org/10.1002/bdra.23232

    Article  CAS  PubMed  Google Scholar 

  39. Garle MJ, Knight A, Downing AT, Jassi KL, Clothier RH, Fry JR (2000) Stimulation of dichlorofluorescin oxidation by capsaicin and analogues in RAW 264 monocyte/macrophages: lack of involvement of the vanilloid receptor. Biochem Pharmacol 59(5):563–572

    Article  CAS  PubMed  Google Scholar 

  40. Lee MN, Lee SH, Lee MY, Kim YH, Park JH, Ryu JM, Yun SP, Lee YJ, Kim MO, Park K, Han HJ (2008) Effect of dihydrotestosterone on mouse embryonic stem cells exposed to H2O2-induced oxidative stress. J Vet Sci 9(3):247–256

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret K. Pratten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mohammed, O.J., Pratten, M.K. (2019). Micromass Methods for the Evaluation of Developmental Toxicants. In: Hansen, J., Winn, L. (eds) Developmental Toxicology. Methods in Molecular Biology, vol 1965. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9182-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9182-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9181-5

  • Online ISBN: 978-1-4939-9182-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics