Skip to main content

Delta Integration CRISPR-Cas (Di-CRISPR) in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Microbial Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1927))

Abstract

Despite the advances made in genetic engineering of Saccharomyces cerevisiae, the multicopy genomic integration of large biochemical pathways remains a challenge. Here, we developed a Di-CRISPR (delta integration CRISPR-Cas) platform based on cleavage of the delta sites by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated systems (Cas) to enable unprecedented high-efficiency, multicopy, markerless integrations of large biochemical pathways into the S. cerevisiae genome. Detailed protocols are provided on the entire workflow which includes pDi-CRISPR plasmid and donor DNA construction, Di-CRISPR-mediated integration and analysis of integration efficiencies and copy numbers through flow cytometry and quantitative polymerase chain reaction (qPCR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hong KK, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69:2671–2690

    Article  CAS  Google Scholar 

  2. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72(3):379–412

    Article  CAS  Google Scholar 

  3. Karim AS, Curran KA, Alper HS (2013) Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications. FEMS Yeast Res 13(1):107–116

    Article  CAS  Google Scholar 

  4. Da Silva NA, Srikrishnan S (2012) Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 12(2):197–214

    Article  Google Scholar 

  5. Storici F, Durham CL, Gordenin DA, Resnick MA (2003) Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc Natl Acad Sci U S A 100(25):14994–14999

    Article  CAS  Google Scholar 

  6. de Jong B, Shi S, Valle-Rodríguez J, Siewers V, Nielsen J (2015) Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration. J Ind Microbiol Biotechnol 42(3):477–486

    Article  Google Scholar 

  7. Lee FWF, Silva NAD (1997) Improved efficiency and stability of multiple cloned gene insertions at the δ sequences of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48(3):339–345

    Article  CAS  Google Scholar 

  8. Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Factories 9:32

    Article  Google Scholar 

  9. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761

    Article  CAS  Google Scholar 

  10. Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH et al (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39(14):6315–6325

    Article  CAS  Google Scholar 

  11. Jakočiūnas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE et al (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222

    Article  Google Scholar 

  12. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343

    Article  CAS  Google Scholar 

  13. Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N et al (2015) Homology-integrated CRISPR–Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4(5):585–594

    Article  CAS  Google Scholar 

  14. Shi S, Liang Y, Zhang MM, Ang EL, Zhao H (2016) A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng 33:19–27

    Article  CAS  Google Scholar 

  15. Luo Y, Huang H, Liang J, Wang M, Lu L, Shao Z et al (2013) Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat Commun 4:2894

    Article  Google Scholar 

  16. Sun J, Shao Z, Zhao H, Nair N, Wen F, Xu J-H et al (2012) Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol Bioeng 109(8):2082–2092

    Article  CAS  Google Scholar 

  17. Du J, Yuan Y, Si T, Lian J, Zhao H (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40(18):e142–e142

    Article  CAS  Google Scholar 

  18. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  Google Scholar 

  19. Whelan JA, Russell NB, Whelan MA (2003) A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods 278(1):261–269

    Article  CAS  Google Scholar 

  20. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Bioinformatics methods and protocols: methods in molecular biology. Edited by Krawetz S, Misener S. Humana Press, Totowa, NJ, pp 365–386

    Google Scholar 

Download references

Acknowledgments

We thank Agency for Science, Technology, and Research, Singapore for supporting various research projects in the Metabolic Engineering Research Laboratory (MERL) through the Visiting Investigator Programme to H.Z (1535j00137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shi, S., Liang, Y., Ang, E.L., Zhao, H. (2019). Delta Integration CRISPR-Cas (Di-CRISPR) in Saccharomyces cerevisiae. In: Santos, C., Ajikumar, P. (eds) Microbial Metabolic Engineering. Methods in Molecular Biology, vol 1927. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9142-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9142-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9141-9

  • Online ISBN: 978-1-4939-9142-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics