Skip to main content

Design, Construction, and Application of Transcription Activation-Like Effectors

  • Protocol
  • First Online:
Viral Vectors for Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1937))

Abstract

Transcription activator-like effectors (TALEs) are modular proteins derived from the plant Xanthomonas sp. pathogen that can be designed to target unique DNA sequences following a simple cipher. Customized TALE proteins can be used in a variety of molecular applications that include gene editing and transcriptional modulation. Presently, we provide a brief primer on the design and construction of TALEs. TALE proteins can be fused to a variety of different effector domains that alter the function of the TALE upon binding. This flexibility of TALE design and downstream effect may offer therapeutic applications that are discussed in this section. Finally, we provide a future perspective on TALE technology and what challenges remain for successful translation of gene-editing strategies to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boch J, Scholze H, Schornack S et al (2009) Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science 326(80):1509–1512. https://doi.org/10.1126/science.1178811

    Article  CAS  PubMed  Google Scholar 

  2. Mak AN-S, Bradley P, Cernadas RA et al (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719. https://doi.org/10.1126/science.1216211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Streubel J, Blücher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30:593–595. https://doi.org/10.1038/nbt.2304

    Article  CAS  PubMed  Google Scholar 

  4. Deng D, Yin P, Yan C et al (2012) Recognition of methylated DNA by TAL effectors. Cell Res 22:1502–1504. https://doi.org/10.1038/cr.2012.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guilinger JP, Pattanayak V, Reyon D et al (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11:429–435. https://doi.org/10.1038/nmeth.2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Römer P, Recht S, Strauß T et al (2010) Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol 187:1048–1057. https://doi.org/10.1111/j.1469-8137.2010.03217.x

    Article  CAS  PubMed  Google Scholar 

  7. Lamb BM, Mercer AC, Barbas CF (2013) Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases. Nucleic Acids Res 41:9779–9785. https://doi.org/10.1093/nar/gkt754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meckler JF, Bhakta MS, Kim M-S et al (2013) Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res 41:4118–4128. https://doi.org/10.1093/nar/gkt085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82. https://doi.org/10.1093/nar/gkr218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang F, Cong L, Lodato S et al (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153. https://doi.org/10.1038/nbt.1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55. https://doi.org/10.1038/nrm3486

    Article  CAS  PubMed  Google Scholar 

  13. Cong L, Zhou R, Kuo Y et al (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968. https://doi.org/10.1038/ncomms1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148. https://doi.org/10.1038/nbt.1755

    Article  CAS  PubMed  Google Scholar 

  15. Li T, Huang S, Jiang WZ et al (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372. https://doi.org/10.1093/nar/gkq704

    Article  CAS  PubMed  Google Scholar 

  16. Wood AJ, Lo T-W, Zeitler B et al (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333(80):307–307. https://doi.org/10.1126/science.1207773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tesson L, Usal C, Ménoret S et al (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696. https://doi.org/10.1038/nbt.1940

    Article  CAS  PubMed  Google Scholar 

  18. Wefers B, Meyer M, Ortiz O et al (2013) Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proc Natl Acad Sci U S A 110:3782–3787. https://doi.org/10.1073/pnas.1218721110

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sato K, Oiwa R, Kumita W et al (2016) Generation of a nonhuman primate model of severe combined immunodeficiency using highly efficient genome editing. Cell Stem Cell 19:127–138. https://doi.org/10.1016/j.stem.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  20. Carlson DF, Tan W, Lillico SG et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci 109:17382–17387. https://doi.org/10.1073/pnas.1211446109

    Article  PubMed  Google Scholar 

  21. Kim E, Kim S, Kim DH et al (2012) Precision genome engineering with programmable DNA-nicking enzymes. Genome Res 22:1327–1333. https://doi.org/10.1101/gr.138792.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu H, Wang Y, Zhang Y et al (2015) TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci U S A 112:E1530–E1539. https://doi.org/10.1073/pnas.1421587112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang X, Wang Y, Wu X et al (2015) Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33:175–178. https://doi.org/10.1038/nbt.3127

    Article  CAS  PubMed  Google Scholar 

  24. Ran FA, Hsu PD, Lin C-Y et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389. https://doi.org/10.1016/j.cell.2013.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qasim W, Thrasher AJ (2014) Progress and prospects for engineered T cell therapies. Br J Haematol 166:818–829. https://doi.org/10.1111/bjh.12981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maeder ML, Linder SJ, Reyon D et al (2013) Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 10:243–245. https://doi.org/10.1038/nmeth.2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bultmann S, Morbitzer R, Schmidt CS et al (2012) Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res 40:5368–5377. https://doi.org/10.1093/nar/gks199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao X, Tsang JCH, Gaba F et al (2014) Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res 42:e155. https://doi.org/10.1093/nar/gku836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez-Pinera P, Ousterout DG, Brunger JM et al (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods 10:239–242. https://doi.org/10.1038/nmeth.2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uhde-Stone C, Cheung E, Lu B (2014) TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells. Biochem Biophys Res Commun 443:1189–1194. https://doi.org/10.1016/j.bbrc.2013.12.111

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Xiang D, Heriyanto F et al (2013) Dissecting the roles of miR-302/367 cluster in cellular reprogramming using TALE-based repressor and TALEN. Stem Cell Reports 1:218–225. https://doi.org/10.1016/j.stemcr.2013.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Amabile A, Migliara A, Capasso P et al (2016) Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167:219–232.e14. https://doi.org/10.1016/j.cell.2016.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fink KD, Deng P, Gutierrez J et al (2016) Allele-Specific reduction of the mutant huntingtin allele using transcription activator-like effectors in human huntington’s disease fibroblasts. Cell Transplant 25:677–686. https://doi.org/10.3727/096368916X690863

    Article  PubMed  Google Scholar 

  34. Holkers M, Maggio I, Liu J et al (2013) Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41:e63–e63. https://doi.org/10.1093/nar/gks1446

    Article  CAS  PubMed  Google Scholar 

  35. Yang L, Guell M, Byrne S et al (2013) Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41:9049–9061. https://doi.org/10.1093/nar/gkt555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hathaway NA, Bell O, Hodges C et al (2012) Dynamics and memory of heterochromatin in living cells. Cell 149:1447–1460. https://doi.org/10.1016/j.cell.2012.03.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Munye MM, Tagalakis AD, Barnes JL et al (2016) Minicircle DNA provides enhanced and prolonged transgene expression following airway gene transfer. Sci Rep 6:23125. https://doi.org/10.1038/srep23125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lewis O, Woolley M, Johnson D et al (2016) Chronic, intermittent convection-enhanced delivery devices. J Neurosci Methods 259:47–56. https://doi.org/10.1016/j.jneumeth.2015.11.008

    Article  PubMed  Google Scholar 

  39. Kay MA, He C-Y, Chen Z-Y (2010) A robust system for production of minicircle DNA vectors. Nat Biotechnol 28:1287–1289. https://doi.org/10.1038/nbt.1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu J, Zhang F, Kay MA (2013) A mini-intronic plasmid (MIP): a novel robust transgene expression vector in vivo and in vitro. Mol Ther 21:954–963. https://doi.org/10.1038/mt.2013.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu J, Williams JA, Luke J et al (2017) A 5′ noncoding exon containing engineered intron enhances transgene expression from recombinant AAV vectors in vivo. Hum Gene Ther 28:125–134. https://doi.org/10.1089/hum.2016.140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Montague TG, Cruz JM, Gagnon JA et al (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42:W401–W407. https://doi.org/10.1093/nar/gku410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Fink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Deng, P., Carter, S., Fink, K. (2019). Design, Construction, and Application of Transcription Activation-Like Effectors. In: Manfredsson, F., Benskey, M. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Biology, vol 1937. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9065-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9065-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9064-1

  • Online ISBN: 978-1-4939-9065-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics