Skip to main content

Analysis of DNA–Protein Complexes by Atomic Force Microscopy Imaging: The Case of TRF2–Telomeric DNA Wrapping

  • Protocol
  • First Online:
Atomic Force Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1886))

Abstract

Atomic force microscopy (AFM) is a non-optical microscopy that enables the acquisition at the nanoscale level of a 3D topographical image of the sample. For 30 years, AFM has been a valuable tool in life sciences to study biological samples in the field of tissue, cellular and molecular imaging, of mechanical properties and of force spectroscopy. Since the early beginnings of the technique, AFM has been extensively exploited as an imaging tool for structural studies of nucleic acids and nucleoprotein complexes. The morphometric analysis performed on the images can unveil specific structural and functional aspects of the sample, such as the multimerization state of proteins bound to DNA, or DNA conformational changes led by the DNA-binding proteins. Herein, a method for analyzing a complex formed by a telomeric DNA sequence wrapped around the TRF2 binding protein is presented. The described procedure could be applied to the study of any type of DNA–protein complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61. https://doi.org/10.1103/PhysRevLett.49.57

    Article  Google Scholar 

  2. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933. https://doi.org/10.1103/PhysRevLett.56.930

    Article  CAS  PubMed  Google Scholar 

  3. Allison DP, Mortensen NP, Sullivan CJ, Doktycz MJ (2010) Atomic force microscopy of biological samples. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:618–634. https://doi.org/10.1002/wnan.104

    Article  PubMed  Google Scholar 

  4. Ozkan AD, Topal AE, Dana A et al (2016) Atomic force microscopy for the investigation of molecular and cellular behavior. Micron 89:60–76. https://doi.org/10.1016/j.micron.2016.07.011

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Nora GJ, Ghodke H, Opresko PL (2011) Single molecule studies of physiologically relevant telomeric tails reveal POT1 mechanism for promoting G-quadruplex unfolding. J Biol Chem 286:7479–7489. https://doi.org/10.1074/jbc.M110.205641

    Article  CAS  PubMed  Google Scholar 

  6. Li BS, Wei B, Goh MC ((2012)) Direct visualization of the formation of RecA/dsDNA complexes at the single-molecule level. Micron 43:1073–1075. https://doi.org/10.1016/j.micron.2012.04.016

    Article  CAS  PubMed  Google Scholar 

  7. Poulet A, Pisano S, Faivre-Moskalenko C et al (2012) The N-terminal domains of TRF1 and TRF2 regulate their ability to condense telomeric DNA. Nucleic Acids Res 40:2566–2576. https://doi.org/10.1093/nar/gkr1116

    Article  CAS  PubMed  Google Scholar 

  8. Shlyakhtenko LS, Lushnikov AY, Miyagi A, Lyubchenko YL (2012) Specificity of binding of single-stranded DNA-binding protein to its target. Biochemistry (Mosc) 51:1500–1509. https://doi.org/10.1021/bi201863z

    Article  CAS  Google Scholar 

  9. Buechner CN, Maiti A, Drohat AC, Tessmer I (2015) Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging. Nucleic Acids Res 43:2716–2729. https://doi.org/10.1093/nar/gkv139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang Y, Marszalek PE (2011) Atomic force microscopy captures MutS tetramers initiating DNA mismatch repair. EMBO J 30:2881–2893. https://doi.org/10.1038/emboj.2011.180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cicconi A, Micheli E, Vernì F et al (2017) The Drosophila telomere-capping protein Verrocchio binds single-stranded DNA and protects telomeres from DNA damage response. Nucleic Acids Res 45:3068–3085. https://doi.org/10.1093/nar/gkw1244

    Article  CAS  PubMed  Google Scholar 

  12. Benarroch-Popivker D, Pisano S, Mendez-Bermudez A et al (2016) TRF2-mediated control of telomere DNA topology as a mechanism for chromosome-end protection. Mol Cell 61:274–286. https://doi.org/10.1016/j.molcel.2015.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pisano S, Pascucci E, Cacchione S et al (2006) AFM imaging and theoretical modeling studies of sequence-dependent nucleosome positioning. Biophys Chem 124:81–89. https://doi.org/10.1016/j.bpc.2006.05.012

    Article  CAS  PubMed  Google Scholar 

  14. Fu H, Freedman BS, Lim CT et al (2011) Atomic force microscope imaging of chromatin assembled in Xenopus laevis egg extract. Chromosoma 120:245–254. https://doi.org/10.1007/s00412-010-0307-4

    Article  PubMed  PubMed Central  Google Scholar 

  15. North JA, Šimon M, Ferdinand MB et al (2014) Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure. Nucleic Acids Res 42:4922–4933. https://doi.org/10.1093/nar/gku150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Athwal RK, Walkiewicz MP, Baek S et al (2015) CENP-A nucleosomes localize to transcription factor hotspots and subtelomeric sites in human cancer cells. Epigenetics Chromatin 8:2. https://doi.org/10.1186/1756-8935-8-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kasas S, Thomson NH, Smith BL et al (1997) Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry (Mosc) 36:461–468. https://doi.org/10.1021/bi9624402

    Article  CAS  Google Scholar 

  18. Wang H, Bash R, Yodh JG et al (2002) Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. Biophys J 83:3619–3625. https://doi.org/10.1016/S0006-3495(02)75362-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang H, Bash R, Yodh JG et al (2004) Using atomic force microscopy to study nucleosome remodeling on individual nucleosomal arrays in situ. Biophys J 87:1964–1971. https://doi.org/10.1529/biophysj.104.042606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shlyakhtenko LS, Lushnikov AY, Lyubchenko YL (2009) Dynamics of nucleosomes revealed by time-lapse atomic force microscopy. Biochemistry (Mosc) 48:7842–7848. https://doi.org/10.1021/bi900977t

    Article  CAS  Google Scholar 

  21. Pisano S, Marchioni E, Galati A et al (2007) Telomeric nucleosomes are intrinsically mobile. J Mol Biol 369:1153–1162. https://doi.org/10.1016/j.jmb.2007.04.027

    Article  CAS  PubMed  Google Scholar 

  22. Pisano S, Leoni D, Galati A et al (2010) The human telomeric protein hTRF1 induces telomere-specific nucleosome mobility. Nucleic Acids Res 38:2247–2255. https://doi.org/10.1093/nar/gkp1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Montel F, Castelnovo M, Menoni H et al (2011) RSC remodeling of oligo-nucleosomes: an atomic force microscopy study. Nucleic Acids Res 39:2571–2579. https://doi.org/10.1093/nar/gkq1254

    Article  CAS  PubMed  Google Scholar 

  24. Yeeles JTP, van Aelst K, Dillingham MS, Moreno-Herrero F (2011) Recombination hotspots and single-stranded DNA binding proteins couple DNA translocation to DNA unwinding by the AddAB helicase-nuclease. Mol Cell 42:806–816. https://doi.org/10.1016/j.molcel.2011.04.012

    Article  CAS  PubMed  Google Scholar 

  25. Hansma HG, Revenko I, Kim K, Laney DE (1996) Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids. Nucleic Acids Res 24:713–720. https://doi.org/10.1093/nar/24.4.713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rivetti C, Guthold M, Bustamante C (1996) Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. J Mol Biol 264:919–932. https://doi.org/10.1006/jmbi.1996.0687

    Article  CAS  PubMed  Google Scholar 

  27. Pastré D, Hamon L, Landousy F et al (2006) Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: a solution to DNA imaging by atomic force microscopy under high ionic strengths. Langmuir 22:6651–6660. https://doi.org/10.1021/la053387y

    Article  CAS  PubMed  Google Scholar 

  28. Voigtländer B (2015) Amplitude modulation (AM) mode in dynamic atomic force microscopy. In: Scanning probe microscopy, atomic force microscopy and scanning tunneling microscopy, vol 69. Springer-Verlag, Berlin Heidelberg, pp 187–204. https://doi.org/10.1007/978-3-662-45240-0_14

    Chapter  Google Scholar 

  29. Lyubchenko YL, Shlyakhtenko LS (2016) Imaging of DNA and protein-DNA complexes with atomic force microscopy. Crit Rev Eukaryot Gene Expr 26:63–96. https://doi.org/10.1615/CritRevEukaryotGeneExpr.v26.i1.70

    Article  PubMed  PubMed Central  Google Scholar 

  30. Verhoeven EE, Wyman C, Moolenaar GF et al (2001) Architecture of nucleotide excision repair complexes: DNA is wrapped by UvrB before and after damage recognition. EMBO J 20:601–611. https://doi.org/10.1093/emboj/20.3.601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rivetti C, Codeluppi S (2001) Accurate length determination of DNA molecules visualized by atomic force microscopy: evidence for a partial B- to A-form transition on mica. Ultramicroscopy 87:55–66. https://doi.org/10.1016/S0304-3991(00)00064-4

    Article  CAS  PubMed  Google Scholar 

  32. García R, Pérez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47:197–301. https://doi.org/10.1016/S0167-5729(02)00077-8

    Article  Google Scholar 

  33. Moreno-Herrero F, Colchero J, Baró AM (2003) DNA height in scanning force microscopy. Ultramicroscopy 96:167–174. https://doi.org/10.1016/S0304-3991(03)00004-4

    Article  CAS  PubMed  Google Scholar 

  34. Santos S, Barcons V, Christenson HK et al (2011) The intrinsic resolution limit in the atomic force microscope: implications for heights of nano-scale features. PLoS One 6:e23821. https://doi.org/10.1371/journal.pone.0023821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bustamante C, Keller D, Yang G (1993) Scanning force microscopy of nucleic acids and nucleoprotein assemblies. Curr Opin Struct Biol 3:363–372. https://doi.org/10.1016/S0959-440X(05)80107-1

    Article  CAS  Google Scholar 

  36. Schneider SW, Lärmer J, Henderson RM, Oberleithner H (1998) Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy. Pflugers Arch 435:362–367. https://doi.org/10.1007/s004240050524

    Article  CAS  PubMed  Google Scholar 

  37. Nettikadan S, Tokumasu F, Takeyasu K (1996) Quantitative analysis of the transcription factor AP2 binding to DNA by atomic force microscopy. Biochem Biophys Res Commun 226:645–649. https://doi.org/10.1006/bbrc.1996.1409

    Article  CAS  PubMed  Google Scholar 

  38. Broccoli D, Smogorzewska A, Chong L, de Lange T (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 17:231–235. https://doi.org/10.1038/ng1097-231

    Article  CAS  PubMed  Google Scholar 

  39. Luijsterburg MS, White MF, van Driel R, Dame RT (2008) The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 43:393–418. https://doi.org/10.1080/10409230802528488

    Article  CAS  PubMed  Google Scholar 

  40. Rivetti C, Guthold M, Bustamante C (1999) Wrapping of DNA around the E. coli RNA polymerase open promoter complex. EMBO J 18:4464–4475. https://doi.org/10.1093/emboj/18.16.4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beerens N, Hoeijmakers JHJ, Kanaar R et al (2005) The CSB protein actively wraps DNA. J Biol Chem 280:4722–4729. https://doi.org/10.1074/jbc.M409147200

    Article  CAS  PubMed  Google Scholar 

  42. Wang H, Dodd IB, Dunlap DD et al (2013) Single molecule analysis of DNA wrapping and looping by a circular 14mer wheel of the bacteriophage 186 CI repressor. Nucleic Acids Res 41:5746–5756. https://doi.org/10.1093/nar/gkt298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cary RB, Peterson SR, Wang J et al (1997) DNA looping by Ku and the DNA-dependent protein kinase. Proc Natl Acad Sci U S A 94:4267–4272. https://doi.org/10.1073/pnas.94.9.4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schnitzler GR, Cheung CL, Hafner JH et al (2001) Direct imaging of human SWI/SNF-remodeled mono- and polynucleosomes by atomic force microscopy employing carbon nanotube tips. Mol Cell Biol 21:8504–8511. https://doi.org/10.1128/MCB.21.24.8504-8511.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tahirov TH, Sato K, Ichikawa-Iwata E et al (2002) Mechanism of c-Myb-C/EBP beta cooperation from separated sites on a promoter. Cell 108:57–70. https://doi.org/10.1016/S0092-8674(01)00636-5

    Article  CAS  PubMed  Google Scholar 

  46. Bussiek M, Tóth K, Brun N, Langowski J (2005) DNA-loop formation on nucleosomes shown by in situ scanning force microscopy of supercoiled DNA. J Mol Biol 345:695–706. https://doi.org/10.1016/j.jmb.2004.11.016

    Article  CAS  PubMed  Google Scholar 

  47. Lia G, Indrieri M, Owen-Hughes T et al (2008) ATP-dependent looping of DNA by ISWI. J Biophotonics 1:280–286. https://doi.org/10.1002/jbio.200810027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Neaves KJ, Cooper LP, White JH et al (2009) Atomic force microscopy of the EcoKI type I DNA restriction enzyme bound to DNA shows enzyme dimerization and DNA looping. Nucleic Acids Res 37:2053–2063. https://doi.org/10.1093/nar/gkp042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu D, Kaur P, Li ZM et al (2016) Visualizing the path of DNA through proteins using DREEM imaging. Mol Cell 61:315–323. https://doi.org/10.1016/j.molcel.2015.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramanujan S (1914) Modular equations and approximations to π. Quart J Pure App Math 45:350–372

    Google Scholar 

  51. Shlyakhtenko LS, Gall AA, Lyubchenko YL (2013) Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy. Methods Mol Biol 931:295–312. https://doi.org/10.1007/978-1-62703-056-4_14

    Article  CAS  PubMed  Google Scholar 

  52. Heddle JG, Mitelheiser S, Maxwell A, Thomson NH (2004) Nucleotide binding to DNA gyrase causes loss of DNA wrap. J Mol Biol 337:597–610. https://doi.org/10.1016/j.jmb.2004.01.049

    Article  CAS  PubMed  Google Scholar 

  53. Ratcliff GC, Erie DA (2001) A novel single-molecule study to determine protein–protein association constants. J Am Chem Soc 123:5632–5635. https://doi.org/10.1021/ja005750n

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ligue Nationale contre le Cancer (Equipe labélisée) and Investments for the Future LABEXSIGNALIFE (reference ANR-236 11-LABX-0028-01).

The authors acknowledge PICMI, the IRCAN’s Imaging core facility. The atomic force microscopy of PICMI was supported by the Association pour la Recherche sur le Cancer (ARC), by the Infrastructures en Biologie Santé et Agronomie (IBiSA) and by the Conseil General 06 de la Région Provence Alpes-Côte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Pisano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pisano, S., Gilson, E. (2019). Analysis of DNA–Protein Complexes by Atomic Force Microscopy Imaging: The Case of TRF2–Telomeric DNA Wrapping. In: Santos, N., Carvalho, F. (eds) Atomic Force Microscopy. Methods in Molecular Biology, vol 1886. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8894-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8894-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8893-8

  • Online ISBN: 978-1-4939-8894-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics