Skip to main content

AFM Nanoindentation Experiments on Protein Shells: A Protocol

  • Protocol
  • First Online:
Atomic Force Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1886))

Abstract

Proteinaceous assemblies are ubiquitous in nature. One important form of these assemblies are protein nanoshells such as viruses; however, a variety of other protein shells exist. To deepen our knowledge on the structure and function of protein shells, a profound insight into their mechanical properties is required. Nanoindentation measurements with an atomic force microscope (AFM) are increasingly being performed to probe such material properties. This single particle approach allows us to determine the spring constant, the Young’s modulus, as well as the force and deformation at which failure occurs of the nanoshells. The experimental procedures for these mechanical measurements are described here in detail, focusing on surface preparation, AFM imaging and nanoindentation, and the subsequent data analysis of the force–distance curves. Whereas AFM can be operated in air and in liquid, the described methods are for probing single particles in liquid to enable studies in close to physiological environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sutter M et al (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 15(9):939–947

    Article  CAS  Google Scholar 

  2. Knipe DM, Howley PM (eds) (2013) Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  3. Querol-Audí J et al (2009) The mechanism of vault opening from the high resolution structure of the N-terminal repeats of MVP. EMBO J 28(21):3450–3457

    Article  CAS  Google Scholar 

  4. Kerfeld CA, Melnicki MR (2016) Assembly, function and evolution of cyanobacterial carboxysomes. Curr Opin Plant Biol 31:66–75

    Article  CAS  Google Scholar 

  5. Kol N et al (2007) A stiffness switch in human immunodeficiency virus. Biophys J 92(5):1777–1783

    Article  CAS  Google Scholar 

  6. Snijder J et al (2013) Probing the biophysical interplay between a viral genome and its capsid. Nat Chem 5(6):502–509

    Article  CAS  Google Scholar 

  7. Ivanovska IL et al (2004) Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc Natl Acad Sci U S A 101(20):7600–7605

    Article  CAS  Google Scholar 

  8. Roos WH et al (2012) Mechanics of bacteriophage maturation. Proc Natl Acad Sci U S A 109(7):2342–2347

    Article  Google Scholar 

  9. Hernando-Pérez M et al (2014) Cementing proteins provide extra mechanical stabilization to viral cages. Nat Commun 5:4520

    Article  CAS  Google Scholar 

  10. Snijder J et al (2012) Probing the impact of loading rate on the mechanical properties of viral nanoparticles. Micron 43(12):1343–1350

    Article  CAS  Google Scholar 

  11. Vaughan R et al (2014) The tripartite virions of the brome mosaic virus have distinct physical properties that affect the timing of the infection process. J Virol 88(11):6483–6491

    Article  CAS  Google Scholar 

  12. Baclayon M et al (2011) Prestress strengthens the shell of Norwalk virus nanoparticles. Nano Lett 11(11):4865–4869

    Article  CAS  Google Scholar 

  13. Li S et al (2014) pH-controlled two-step uncoating of influenza virus. Biophys J 106(7):1447–1456

    Article  CAS  Google Scholar 

  14. Snijder J et al (2013) Integrin and defensin modulate the mechanical properties of adenovirus. J Virol 87:2756–2766

    Article  CAS  Google Scholar 

  15. Ortega-Esteban A et al (2015) Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 9(11):10826–10833

    Article  CAS  Google Scholar 

  16. Roos WH, Bruinsma R, Wuite GJL (2010) Physical virology. Nat Phys 6(10):733–743

    Article  CAS  Google Scholar 

  17. Mateu MG (2013) Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 531(1–2):65–79

    Article  CAS  Google Scholar 

  18. Marchetti M, Wuite GJL, Roos WH (2016) Atomic force microscopy observation and characterization of single virions and virus-like particles by nano-indentation. Curr Opin Virol 18:82–88

    Article  CAS  Google Scholar 

  19. Snijder J et al (2016) Assembly and mechanical properties of the cargo-free and cargo-loaded bacterial nanocompartment encapsulin. Biomacromolecules 17(8):2522–2529

    Article  CAS  Google Scholar 

  20. Llauro A et al (2014) Mechanical stability and reversible fracture of vault particles. Biophys J 106(3):687–695

    Article  CAS  Google Scholar 

  21. Heinze K et al (2016) Protein nanocontainers from nonviral origin: testing the mechanics of artificial and natural protein cages by AFM. J Phys Chem B 120(26):5945–5952

    Article  CAS  Google Scholar 

  22. Hansma PK et al (1994) Tapping mode atomic-force microscopy in liquids. Appl Phys Lett 64(13):1738–1740

    Article  CAS  Google Scholar 

  23. Putman CAJ et al (1994) Tapping mode atomic-force microscopy in liquid. Appl Phys Lett 64(18):2454–2456

    Article  CAS  Google Scholar 

  24. de Pablo PJ et al (1998) Jumping mode scanning force microscopy. Appl Phys Lett 73(22):3300–3302

    Article  Google Scholar 

  25. Michel JP et al (2006) Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc Natl Acad Sci U S A 103(16):6184–6189

    Article  CAS  Google Scholar 

  26. Carrasco C et al (2006) DNA-mediated anisotropic mechanical reinforcement of a virus. Proc Natl Acad Sci U S A 103(37):13706–13711

    Article  CAS  Google Scholar 

  27. Ivanovska I et al (2007) Internal DNA pressure modifies stability of WT phage. Proc Natl Acad Sci U S A 104(23):9603–9608

    Article  CAS  Google Scholar 

  28. Uetrecht C et al (2008) High-resolution mass spectrometry of viral assemblies: molecular composition and stability of dimorphic hepatitis B virus capsids. Proc Natl Acad Sci U S A 105:9216–9220

    Article  Google Scholar 

  29. Carrasco C et al (2008) Manipulation of the mechanical properties of a virus by protein engineering. Proc Natl Acad Sci U S A 105(11):4150–4155

    Article  Google Scholar 

  30. Roos WH et al (2009) Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci U S A 106:9673–9678

    Article  Google Scholar 

  31. Arkhipov A et al (2009) Elucidating the mechanism behind irreversible deformation of viral capsids. Biophys J 97(7):2061–2069

    Article  CAS  Google Scholar 

  32. Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70(10):3967–3969

    Article  CAS  Google Scholar 

  33. Gibbons MM, Klug WS (2007) Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys Rev E 75(3):031901

    Article  CAS  Google Scholar 

  34. Gibbons MM, Klug WS (2008) Influence of nonuniform geometry on nanoindentation of viral capsids. Biophys J 95(8):3640–3649

    Article  CAS  Google Scholar 

  35. Landau LD, Lifshitz EM (1986) Theory of elasticity, 3rd edn. Elsevier, Oxford

    Google Scholar 

  36. Roos WH, Wuite GJL (2009) Nanoindentation studies reveal material properties of viruses. Adv Mater 21:1187–1192

    Article  CAS  Google Scholar 

  37. Baclayon M, Wuite GJL, Roos WH (2010) Imaging and manipulation of single viruses by atomic force microscopy. Soft Matter 6(21):5273–5285

    Article  CAS  Google Scholar 

  38. Kol N et al (2006) Mechanical properties of murine leukemia virus particles: effect of maturation. Biophys J 91(2):767–774

    Article  CAS  Google Scholar 

  39. Klug WS et al (2006) Failure of viral shells. Phys Rev Lett 97(22):228101

    Article  CAS  Google Scholar 

  40. Llauró A et al (2015) Calcium ions modulate the mechanics of tomato bushy stunt virus. Biophys J 109(2):390–397

    Article  CAS  Google Scholar 

  41. Liashkovich I et al (2008) Exceptional mechanical and structural stability of HSV-1 unveiled with fluid atomic force microscopy. J Cell Sci 121(Pt 14):2287–2292

    Article  CAS  Google Scholar 

  42. Kienberger F et al (2004) Monitoring RNA release from human rhinovirus by dynamic force microscopy. J Virol 78(7):3203–3209

    Article  CAS  Google Scholar 

  43. Xu X et al (2008) Unmasking imaging forces on soft biological samples in liquids when using dynamic atomic force microscopy: a case study on viral capsids. Biophys J 95(5):2520–2528

    Article  CAS  Google Scholar 

  44. Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1–6):1–152

    Article  CAS  Google Scholar 

  45. Gibbons MM, Klug WS (2007) Mechanical modeling of viral capsids. J Mater Sci 42(21):8995–9004

    Article  CAS  Google Scholar 

  46. Cieplak M, Robbins MO (2013) Nanoindentation of 35 virus capsids in a molecular model: relating mechanical properties to structure. PLoS One 8(6):e63640

    Article  CAS  Google Scholar 

  47. Polles G et al (2013) Mechanical and assembly units of viral capsids identified via quasi-rigid domain decomposition. PLoS Comput Biol 9(11):e1003331

    Article  CAS  Google Scholar 

  48. Roos WH (2011) How to perform a nanoindentation experiment on a virus. Methods Mol Biol 783:251–264

    Article  CAS  Google Scholar 

Download references

Justification and Acknowledgments

A first version of this chapter was published in Methods in Molecular Biology Vol. 783 pp 251–264. The current version is an overhaul and extended version of the previous protocol. This work is supported by a Nederlandse Organisatie der Wetenschappen Vidi vernieuwingsimpuls grant (to WHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter H. Roos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guo, Y., Roos, W.H. (2019). AFM Nanoindentation Experiments on Protein Shells: A Protocol. In: Santos, N., Carvalho, F. (eds) Atomic Force Microscopy. Methods in Molecular Biology, vol 1886. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8894-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8894-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8893-8

  • Online ISBN: 978-1-4939-8894-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics