Skip to main content

Phytoplasma Transmission: Insect Rearing and Infection Protocols

  • Protocol
  • First Online:
Phytoplasmas

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1875))

Abstract

Phytoplasmas are obligate pathogens and thus they can be studied only in association with their plants or insect hosts. In this chapter, we present protocols for rearing some phytoplasma insect vectors, to obtain infected insects and plants under controlled environmental conditions. We focus on Euscelidius variegatus and Macrosteles quadripunctulatus that can infect Arabidopsis thaliana, and Hyalesthes obsoletus and Scaphoideus titanus, that can infect grapevine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Contaldo N, Bertaccini A, Paltrinieri S et al (2012) Axenic culture of plant pathogenic phytoplasmas. Phytopathol Mediterr 51:607–617

    CAS  Google Scholar 

  2. Bai X, Zhang J, Ewing A et al (2006) Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 18:3682–3696

    Article  Google Scholar 

  3. Cettul E, Firrao G (2011) Development of phytoplasma-induced flower symptoms in Arabidopsis thaliana. Physiol Mol Plant Pathol 76:204–211

    Article  CAS  Google Scholar 

  4. Pacifico D, Galetto L, Rashidi M et al (2015) Decreasing global transcript levels over time suggest that phytoplasma cells enter stationary phase during plant and insect colonization. Appl Environ Microbiol 81(7):2591–2602

    Article  CAS  Google Scholar 

  5. Pagliari L, Buoso S, Santi S et al (2017) Filamentous sieve element proteins are able to limit phloem mass flow, but not phytoplasma spread. J Exp Bot 68(13):3673–3688

    Article  CAS  Google Scholar 

  6. Chuche J, Thiéry D (2014) Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: a review. Agron Sust Devel 34:381–403

    Article  Google Scholar 

  7. Maixner M (1994) Hyalesthes obsoletus (Auchenorrhyncha: Cixiidae). Vitis 33:103–104

    Google Scholar 

  8. Bressan A, Clair D, Semetey O et al (2006) Insect injection and artificial feeding bioassays to test the vector specificity of flavescence Doree phytoplasma. Phytopathology 96(7):790–796

    Article  Google Scholar 

  9. Tanne E, Boudon-Padieu E, Clair D et al (2001) Detection of phytoplasma by polymerase chain reaction of insect feeding medium and its use in determining vectoring ability. Phytopathology 91:741–746

    Article  CAS  Google Scholar 

  10. Rashidi M, Galetto L, Bosco D et al (2015) Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species. BMC Microbiol 15(1):193

    Article  Google Scholar 

  11. Bosco D, Tedeschi R (2013) Insect vector transmission assays. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods in molecular biology (methods and protocols), vol 938. Humana Press, Totowa, NJ

    Chapter  Google Scholar 

  12. Purcell AH, Steiner T, Mégraud F et al (1986) In vitro isolation of a transovarially transmitted bacterium from the leafhopper Euscelidius variegatus (Hemiptera: Cicadellidae). J Invertebr Pathol 48(1):66–73

    Article  Google Scholar 

  13. Reis F, Aguin-Pombo D (2003) Euscelidius variegatus (Kirschbaum, 1858), a new leafhopper record to Madeira archipelago (Hemiptera, Cicadellidae). In: Vieraea, vol 31, pp 27–31

    Google Scholar 

  14. Caudwell A, Larrue J (1977) La production de cicadelles saines et infectieuses pour les épreuves d’infectivité chez les jaunisses à Mollicutes des végétaux. L’élevage de Euscelidius variegatus KBM et la ponte sur mousse de polyuréthane. Ann Zool Ecol Anim 9:443–456

    Google Scholar 

  15. Giannotti J (1969) Transmission of clover phyllody by a new leafhopper vector, Euscelidius variegatus. Plant Dis Rep 53:173

    Google Scholar 

  16. Severin HHP (1947) Newly discovered leafhopper vectors of California Aster-yellows virus. Phytopathology 37(5):364

    Google Scholar 

  17. Jensen DD (1969) Comparative transmission of western X-disease virus by Colladonus montanus, C. Geminatus, and a new leafhopper vector, Euscelidius variegatus. J Econ Entomol 62(5):1147–1150

    Article  Google Scholar 

  18. Palermo S, Arzone A, Bosco D (2001) Vector-pathogen-host plant relationships of chrysanthemum yellows (CY) phytoplasma and the vector leafhoppers Macrosteles quadripunctulatus and Euscelidius variegatus. Entomol Exp Appl 99(3):347–354

    Article  Google Scholar 

  19. Lefol C Lherminier J, Boudon-Padieu E et al (1994) Propagation of Flavescence dorée MLO (mycoplasma-like organism) in the leafhopper vector Euscelidius variegatus Kbm. J Invertebr Pathol 63(3):285–293

    Article  Google Scholar 

  20. Caudwell A, Kuszala C, Larrue J et al (1972) Transmission de la Flavescence dorée de la Fève à la Fève par des cicadelles des genres Euscelis et Euscelidius. Intervention possible de ces insectes dans l'épidémiologie du Bois noir en Bourgogne. Ann Phytopathol 1:181–189

    Google Scholar 

  21. Zhang J, Miller S, Hoy C et al (1998) A rapid method for detection and differentiation of aster-yellows phytoplasma-infected and inoculative leafhoppers. Phytopathology 88(Suppl):S84

    Google Scholar 

  22. Kirby P (2000) Some records of Macrosteles quadripunctulatus (Kirschbaum) (Hemiptera: Cicadellidae). Br J Entomol Nat History 13(1):67–68

    Google Scholar 

  23. Kwon YJ (1988) Taxonomic revision of the leafhopper genus' Macrosteles' fieber of the world (Homoptera: Cicadellidae) Doctoral dissertation, University of Wales, College of Cardiff

    Google Scholar 

  24. Orenstein S, Franck A, Kuznetzova L et al (1999) Association of phytoplasmas with a yellows disease of carrot in Israel. J Plant Pathol 81:193–199

    CAS  Google Scholar 

  25. Brcak J (1979) Leafhopper and planthopper vectors of plant disease agents in central and southern Europe. In: Maramorosch K, Harris KF (eds) Leafhopper vectors and plant disease agents. Academic Press, London, pp 97–146

    Chapter  Google Scholar 

  26. Minucci C, Boccardo G (1997) Genetic diversity in the stolbur phytoplasma group. Phytopathol Mediterr 36(1):45–49

    Google Scholar 

  27. Alma A, Conti M, Boccardo G (2000) Leafhopper transmission of a phytoplasma of the 16Sr-IB group [Chrysanthemum yellows (CY)] to grapevine [Vitis vinifera L.]. Petria (Italy)

    Google Scholar 

  28. Boyes DC, Zayed AM, Ascenzi R et al (2001) Growth stage–based phenotypic analysis of Arabidopsis a model for high throughput functional genomics in plants. Plant Cell 13(7):1499–1510

    Article  CAS  Google Scholar 

  29. Beard CB, Durvasula RV, Richards FF (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4(4):581

    Article  CAS  Google Scholar 

  30. Galetto L, Nardi M, Saracco P et al (2009) Variation in vector competency depends on chrysanthemum yellows phytoplasma distribution within Euscelidius variegatus. Entomol Exp Appl 131(2):200–207

    Article  Google Scholar 

  31. Bosco D, Galetto L, Leoncini P et al (2007) Interrelationships between ‘Candidatus Phytoplasma asteris’ and its leafhopper vectors (Homoptera: Cicadellidae). J Econ Entomol 100:1504–1511

    Article  CAS  Google Scholar 

  32. Black LM (1940) Mechanical transmission of aster yellows virus to leafhoppers. Phytopathology 30:2–3

    Google Scholar 

  33. Foissac X, Danet JL, Saillard C et al (1997) Mutagenesis by insertion of Tn4001 into the genome of Spiroplasma citri: characterization of mutants affected in plant pathogenicity and transmission to the plant by the leafhopper vector Circulifer haematoceps. Mol Plant Microbe In 10(4):454–461

    Article  CAS  Google Scholar 

  34. Ge Q, Maixner M (2003) Comparative experimental transmission of grapevine yellows phytoplasmas to plants and artificial feeding medium. Pages 109–110. 14th Meeting of the International Council for the Study of Virus and Virus-Like Diseases of the Grapevine (ICVG), Locorotondo, Italy, 12–17 Sept 2003

    Google Scholar 

  35. Schvester D, Moutous G, Carle P (1962) Scaphoideus littoralis Ball. (Homopt. Jassidae) cicadelle vectrice de la Flavescence dorée de la vigne. Rev Zool Agr Appl 12:118–131

    Google Scholar 

  36. Boudon-Padieu E (2000) Cicadelle vectrice de la flavescence dorée, Scaphoideus titanus Ball, 1932. In: Stockel J (ed) Ravageurs de la vigne. Féret, Bordeaux, pp 110–120

    Google Scholar 

  37. Vidano C (1964) Scoperta in Italia dello Scaphoideus littoralis Ball cicalina americana collegata alla «Flavescence dorée» della Vite. L’Italia agricola 101:1031–1049

    Google Scholar 

  38. Maixner M, Pearson RC, Boudon-Padieu E et al (1993) Scaphoideus titanus, a possible vector of grapevine yellows in New York. Plant Dis 77:408–413

    Article  Google Scholar 

  39. Della Giustina W, Hogrel R, Della Giustina M (1992) Description des différents stades larvaires de Scaphoideus titanus Ball (Homoptera, Cicadellidae). Bull Soc Entomol Fr 97:269–276

    Google Scholar 

  40. Bressan A, Girolami V, Boudon-Padieu E (2005) Reduced fitness of the leafhopper vector Scaphoideus titanus exposed to Flavescence dorée phytoplasma. Entomol Exp Appl 115:283–290

    Article  Google Scholar 

  41. Caudwell A, Larrue J, Kuszala C et al (1971) Pluralité des jaunisses de la vigne. Ann Phytopathol 3:95–105

    Google Scholar 

  42. Boudon-Padieu E, Larrue J, Caudwell A (1990) Serological detection and characterization of grapevine Flavescence dorée MLO and other plant MLOs. IOM Letters 1:217–218

    Google Scholar 

  43. Alma A, Palermo S, Boccardo G et al (2001) Transmission of chrysanthemum yellows, a subgroup 16SrI-B phytoplasma, to grapevine by four leafhopper species. J Plant Pathol 83:181–187

    Google Scholar 

  44. Sforza R, Bourgoin T, Wilson ST et al (1999) Field observations, laboratory rearing and descriptions of immatures of the planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae). Eur J Entomol 96:409–418

    Google Scholar 

  45. Sharon R, Soroker V, Wesley SD et al (2005) Vitex agnus-castus is a preferred host plant for Hyalesthes obsoletus. J Chem Ecol 31:1051–1063

    Article  CAS  Google Scholar 

  46. Riolo P, Minuz R, Anfora G et al (2012) Perception of host plant volatiles in Hyalesthes obsoletus: behavior, morphology, and electrophysiology. J Chem Ecol 38:1017–1030

    Article  Google Scholar 

  47. Johannesen J, Lux B, Michel K et al (2008) Invasion biology and host specificity of the grapevine yellows disease vector Hyalesthes obsoletus in Europe. Entomol Exp Appl 126:217–227

    Article  Google Scholar 

  48. Caudwell A, Kuszala C, Bachelier JC et al (1970) Transmission de la Flavescence dorée de la vigne aux plantes herbacées par l’allongement du temps d’utilisation de la cicadelle Scaphoideus littoralis BALL et l’étude de sa survie sur un grand nombre d’espèces végétales. Ann Phytopathol 2:415–428

    Google Scholar 

  49. Chuche J, Thiéry D (2009) Cold winter temperatures condition the egg-hatching dynamics of a grape disease vector. Naturwissenschaften 96(7):827–834

    Article  CAS  Google Scholar 

  50. Mazzoni V, Lucchi A, Cokl A et al (2009) Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133:174–185

    Article  Google Scholar 

  51. Kessler S, Schaerer S, Delabays N et al (2011) Host plant preferences of Hyalesthes obsoletus, the vector of the grapevine yellows disease ‘bois noir’, in Switzerland. Entomol Exp Appl 139:60–67

    Article  Google Scholar 

  52. Chuche J, Danet JL, Rivoal JB et al (2018) Minor cultures as hosts for vectors of extensive crop diseases: does Salvia sclarea act as a pathogen and vector reservoir for lavender decline? J Pestic Sci 91(1):145–155

    Article  Google Scholar 

  53. Eveillard S, Jollard C, Labroussaa F et al (2016) Contrasting susceptibilities to Flavescence dorée in Vitis vinifera, rootstocks and wild Vitis species. Front Plant Sci 7:12

    Article  Google Scholar 

  54. Roggia C, Caciagli P, Galetto L et al (2014) Flavescence dorée phytoplasma titre in field-infected Barbera and Nebbiolo grapevines. Plant Pathol 63(1):31–41

    Article  CAS  Google Scholar 

  55. Salar P, Charenton C, Foissac X et al (2013) Multiplication kinetics of Flavescence dorée phytoplasma in broad bean. Effect of phytoplasma strain and temperature. Eur J Plant Pathol 135:371–381

    Article  Google Scholar 

  56. Schvester D, Carle A, Moutous G (1969) Nouvelles données sur la transmission de la Flavescence dorée de la vigne par Scaphoideus littoralis Ball. Ann Zool Ecol Anim 1:445–465

    Google Scholar 

  57. Chuche J, Sauvion N, Thiéry D (2017b) Mixed xylem and phloem sap ingestion in sheath-feeders as normal dietary behavior: evidence from the leafhopper Scaphoideus titanus. J Insect Physiol 102:62–72

    Article  CAS  Google Scholar 

  58. Caudwell A (1964) Identification d’une nouvelle maladie à virus de la vigne, la «Flavescence dorée». Etude des phénomènes de localisation des symptômes et de rétablissement. Ann Epiphyties 15(1):193

    Google Scholar 

  59. Boudon-Padieu E, Cousin MT (1999) Yellow decline of Lavandula hybrida rev and L. vera DC. Int J Trop Plant Dis 17:1–34

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Alberto Loschi (University of Udine, Italy), Filippo Bujan (University of Udine, Italy), and Dr. Stefano Demichelis (University of Torino, Italy) for their help in taking pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pagliari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pagliari, L., Chuche, J., Bosco, D., Thiéry, D. (2019). Phytoplasma Transmission: Insect Rearing and Infection Protocols. In: Musetti, R., Pagliari, L. (eds) Phytoplasmas. Methods in Molecular Biology, vol 1875. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8837-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8837-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8836-5

  • Online ISBN: 978-1-4939-8837-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics