Skip to main content

A Data Analysis Protocol for Quantitative Data-Independent Acquisition Proteomics

  • Protocol
  • First Online:
Functional Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1871))

Abstract

Data-independent acquisition (DIA) mode of mass spectrometry, such as the SWATH-MS technology, enables accurate and consistent measurement of proteins, which is crucial for comparative proteomics studies. However, there is lack of free and easy to implement data analysis protocols that can handle the different data processing steps from raw spectrum files to peptide intensity matrix and its downstream analysis. Here, we provide a data analysis protocol, named diatools, covering all these steps from spectral library building to differential expression analysis of DIA proteomics data. The data analysis tools used in this protocol are open source and the protocol is distributed at Docker Hub as a complete software environment that supports Linux, Windows, and macOS operating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://biognosys.com/media.ashx/irtfusion.fasta

References

  1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  Google Scholar 

  2. Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717

    Article  Google Scholar 

  3. Huang Q, Yang L, Luo J et al (2015) SWATH enables precise label-free quantification on proteome scale. Proteomics 15:1215–1223

    Article  CAS  Google Scholar 

  4. Schubert OT, Gillet LC, Collins BC et al (2015) Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc 10:426–441

    Article  CAS  Google Scholar 

  5. Röst HL, Rosenberger G, Navarro P et al (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219–223

    Article  Google Scholar 

  6. Röst HL, Liu Y, D’Agostino G et al (2016) TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics. Nat Methods 13:777–783

    Article  Google Scholar 

  7. Merkel D (2014) Docker: lightweight Linux containers for consistent development and deployment. Linux J

    Google Scholar 

  8. Chambers MC, Maclean B, Burke R et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920

    Article  CAS  Google Scholar 

  9. Sturm M, Bertsch A, Gröpl C et al (2008) OpenMS—an open-source software framework for mass spectrometry. BMC Bioinformatics 9:163

    Article  Google Scholar 

  10. Deutsch EW, Mendoza L, Shteynberg D et al (2010) A guided tour of the trans-proteomic pipeline. Proteomics 10:1150–1159

    Article  CAS  Google Scholar 

  11. Suomi T, Corthals GL, Nevalainen OS et al (2015) Using peptide-level proteomics data for detecting differentially expressed proteins. J Proteome Res 14:4564–4570

    Article  CAS  Google Scholar 

  12. Huber W, Carey VJ, Gentleman R et al (2015) Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods 12:115–121

    Article  CAS  Google Scholar 

  13. Elo LL, Filén S, Lahesmaa R et al (2008) Reproducibility-optimized test statistic for ranking genes in microarray studies. IEEE/ACM Trans Comput Biol Bioinform 5:423–431

    Article  CAS  Google Scholar 

  14. Suomi T, Elo LL (2017) Enhanced differential expression statistics for data-independent acquisition proteomics. Sci Rep 7:5869

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura L. Elo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pietilä, S., Suomi, T., Aakko, J., Elo, L.L. (2019). A Data Analysis Protocol for Quantitative Data-Independent Acquisition Proteomics. In: Wang, X., Kuruc, M. (eds) Functional Proteomics. Methods in Molecular Biology, vol 1871. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8814-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8814-3_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8813-6

  • Online ISBN: 978-1-4939-8814-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics