Skip to main content

Software Options for the Analysis of MS-Proteomic Data

  • Protocol
  • First Online:
Proteomics Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2361))

Abstract

Mass spectrometry (MS)-based proteomics is currently the most successful approach to measure and compare peptides and proteins in a large variety of biological samples. Modern mass spectrometers, equipped with high-resolution analyzers, provide large amounts of data output. This is the case of shotgun/bottom-up proteomics, which consists in the enzymatic digestion of protein into peptides that are then measured by MS-instruments through a data dependent acquisition (DDA) mode. Dedicated bioinformatic tools and platforms have been developed to face the increasing size and complexity of raw MS data that need to be processed and interpreted for large-scale protein identification and quantification. This chapter illustrates the most popular bioinformatics solution for the analysis of shotgun MS-proteomics data. A general description will be provided on the data preprocessing options and the different search engines available, including practical suggestions on how to optimize the parameters for peptide search, based on hands-on experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 22 January 2022

    In the original version of this book, chapter 16 was published non-open access. It has now been changed to open access under a CC BY 4.0 license, and the copyright holder has been updated to “The Author(s).” This book has been updated with these changes.

References

  1. Zhang Y et al (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113(4):2343–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martens L et al (2005) Do we want our data raw? Including binary mass spectrometry data in public proteomics data repositories. Proteomics 5(13):3501–3505

    Article  CAS  PubMed  Google Scholar 

  3. Deutsch E (2008) mzML: a single, unifying data format for mass spectrometer output. Proteomics 8(14):2776–2777

    Article  CAS  PubMed  Google Scholar 

  4. Deutsch EW (2012) File formats commonly used in mass spectrometry proteomics. Mol Cell Proteomics 11(12):1612–1621

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chambers MC et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30(10):918–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rost HL et al (2016) OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13(9):741–748

    Article  CAS  PubMed  Google Scholar 

  7. Smith R et al (2014) Proteomics, lipidomics, metabolomics: a mass spectrometry tutorial from a computer scientist’s point of view. BMC Bioinformatics 15(Suppl 7):S9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mujezinovic N et al (2006) Cleaning of raw peptide MS/MS spectra: improved protein identification following deconvolution of multiply charged peaks, isotope clusters, and removal of background noise. Proteomics 6(19):5117–5131

    Article  CAS  PubMed  Google Scholar 

  9. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467

    Article  CAS  PubMed  Google Scholar 

  10. Geer LY et al (2004) Open mass spectrometry search algorithm. J Proteome Res 3(5):958–964

    Article  CAS  PubMed  Google Scholar 

  11. Cox J et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805

    Article  CAS  PubMed  Google Scholar 

  12. Kim S, Pevzner PA (2014) MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun 5:5277

    Article  CAS  PubMed  Google Scholar 

  13. Dorfer V et al (2014) MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J Proteome Res 13(8):3679–3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barsnes H, Vaudel M (2018) SearchGUI: a highly adaptable common interface for proteomics search and de novo engines. J Proteome Res 17(7):2552–2555

    Article  CAS  PubMed  Google Scholar 

  15. Vaudel M et al (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol 33(1):22–24

    Article  CAS  PubMed  Google Scholar 

  16. Desiere F (2006) The PeptideAtlas project. Nucleic Acids Res 34(90001):D655–D658

    Article  CAS  PubMed  Google Scholar 

  17. Lam H et al (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7(5):655–667

    Article  CAS  PubMed  Google Scholar 

  18. Deutsch EW et al (2015) Trans-proteomic pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl 9(7–8):745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lam H et al (2008) Building consensus spectral libraries for peptide identification in proteomics. Nat Methods 5(10):873–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shiferaw GA et al (2020) COSS: a fast and user-friendly tool for spectral library searching. J Proteome Res 19(7):2786–2793

    Article  CAS  PubMed  Google Scholar 

  21. Bogdanoff WA et al (2016) De novo sequencing and resurrection of a human astrovirus-neutralizing antibody. ACS Infect Dis 2(5):313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guthals A et al (2017) De novo MS/MS sequencing of native human antibodies. J Proteome Res 16(1):45–54

    Article  CAS  PubMed  Google Scholar 

  23. Tran NH et al (2016) Complete de novo assembly of monoclonal antibody sequences. Sci Rep 6:31730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tabb DL et al (2008) DirecTag: accurate sequence tags from peptide MS/MS through statistical scoring. J Proteome Res 7(9):3838–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Frank A, Pevzner P (2005) PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem 77(4):964–973

    Article  CAS  PubMed  Google Scholar 

  26. Tran NH et al (2017) De novo peptide sequencing by deep learning. Proc Natl Acad Sci U S A 114(31):8247–8252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee J-Y et al (2018) Proteomics of natural bacterial isolates powered by deep learning-based de novo identification. bioRxiv 428334. https://doi.org/10.1101/428334

  28. Karunratanakul K et al (2019) Uncovering thousands of new peptides with sequence-mask-search hybrid de novo peptide sequencing framework. Mol Cell Proteomics 18(12):2478–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou XX et al (2017) pDeep: predicting MS/MS spectra of peptides with deep learning. Anal Chem 89(23):12690–12697

    Article  CAS  PubMed  Google Scholar 

  30. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  CAS  Google Scholar 

  31. Yang H et al (2019) pNovo 3: precise de novo peptide sequencing using a learning-to-rank framework. Bioinformatics 35(14):i183–i190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma B (2015) Novor: real-time peptide de novo sequencing software. J Am Soc Mass Spectrom 26(11):1885–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tran NH et al (2019) Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nat Methods 16(1):63–66

    Article  PubMed  Google Scholar 

  34. Ma B et al (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17(20):2337–2342

    Article  CAS  PubMed  Google Scholar 

  35. Tanner S et al (2005) InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal Chem 77(14):4626–4639

    Article  CAS  PubMed  Google Scholar 

  36. Dasari S et al (2010) TagRecon: high-throughput mutation identification through sequence tagging. J Proteome Res 9(4):1716–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holman JD, Ma ZQ, Tabb DL (2012) Identifying proteomic LC-MS/MS data sets with Bumbershoot and IDPicker. Curr Protoc Bioinformatics Chapter 13:Unit13.17

    Google Scholar 

  38. Devabhaktuni A et al (2019) TagGraph reveals vast protein modification landscapes from large tandem mass spectrometry datasets. Nat Biotechnol 37(4):469–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bateman A et al (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–D169

    Article  CAS  Google Scholar 

  40. Harrow J et al (2012) GENCODE: the reference human genome annotation for the ENCODE project. Genome Res 22(9):1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pruitt KD et al (2014) RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42(D1):756–763

    Article  Google Scholar 

  42. Verheggen K et al (2020) Anatomy and evolution of database search engines-a central component of mass spectrometry based proteomic workflows. Mass Spectrom Rev 39(3):292–306

    Article  CAS  PubMed  Google Scholar 

  43. Siepen JA et al (2007) Prediction of missed cleavage sites in tryptic peptides aids protein identification in proteomics. J Proteome Res 6(1):399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elias JE, Gygi SP (2010) Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol 604:55–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang J et al (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 11(4):M111.010587

    Article  PubMed  Google Scholar 

  46. Xie F et al (2011) Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem 286(29):25443–25449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mueller LN et al (2008) An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 7(1):51–61

    Article  CAS  PubMed  Google Scholar 

  48. Ong SE et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  49. von Haller PD et al (2003) The application of new software tools to quantitative protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry: II. Evaluation of tandem mass spectrometry methodologies for large-scale protein analysis, and the application of statistical tools for data analysis and interpretation. Mol Cell Proteomics 2(7):428–442

    Article  Google Scholar 

  50. Casey TM et al (2017) Analysis of reproducibility of proteome coverage and quantitation using isobaric mass tags (iTRAQ and TMT). J Proteome Res 16(2):384–392

    Article  CAS  PubMed  Google Scholar 

  51. Khan Z et al (2009) Protein quantification across hundreds of experimental conditions. Proc Natl Acad Sci U S A 106:15544–15548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Han DK et al (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19(10):946–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pendarvis K et al (2009) An automated proteomic data analysis workflow for mass spectrometry. BMC Bioinformatics 10(Suppl 11):S17

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cox J et al (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13(9):2513–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang W et al (2012) LFQuant: a label-free fast quantitative analysis tool for high-resolution LC-MS/MS proteomics data. Proteomics 12(23–24):3475–3484

    Article  CAS  PubMed  Google Scholar 

  56. Van Riper SK et al (2016) RIPPER: a framework for MS1 only metabolomics and proteomics label-free relative quantification. Bioinformatics 32(13):2035–2037

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chang C et al (2019) PANDA: a comprehensive and flexible tool for quantitative proteomics data analysis. Bioinformatics 35(5):898–900

    Article  CAS  PubMed  Google Scholar 

  58. Jones AR et al (2012) The mzIdentML data standard for mass spectrometry-based proteomics results. Mol Cell Proteomics 11(7):M111.014381

    Article  PubMed  PubMed Central  Google Scholar 

  59. Walzer M et al (2013) The mzQuantML data standard for mass spectrometry-based quantitative studies in proteomics. Mol Cell Proteomics 12(8):2332–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Proteome Discoverer. https://www.thermofisher.com/

  61. Protein Pilot. https://sciex.com/

  62. Bern M, Kil YJ, Becker C (2012) Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics Chapter 13:Unit13.20

    Google Scholar 

  63. Progenesis. http://www.nonlinear.com/progenesis/

  64. Peaks Studio. www.thermofisher.com

  65. Mascot Distiller. https://www.matrixscience.com/

  66. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  67. Tyanova S et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740

    Article  CAS  PubMed  Google Scholar 

  68. Sinitcyn P et al (2018) MaxQuant goes Linux. Nat Methods 15(6):401–401

    Article  CAS  PubMed  Google Scholar 

  69. Chi H et al (2018) Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat Biotechnol 36(11):1059–1061

    Article  CAS  Google Scholar 

  70. Weisser H et al (2016) Flexible data analysis pipeline for high-confidence proteogenomics. J Proteome Res 15(12):4686–4695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Junker J et al (2012) TOPPAS: a graphical workflow editor for the analysis of high-throughput proteomics data. J Proteome Res 11(7):3914–3920

    Article  CAS  PubMed  Google Scholar 

  72. Berthold MR et al (2008) KNIME: the konstanz information miner. In: Data analysis, machine learning and applications. Springer, Berlin

    Google Scholar 

  73. Sturm M, Kohlbacher O (2009) TOPPView: an open-source viewer for mass spectrometry data. J Proteome Res 8(7):3760–3763

    Article  CAS  PubMed  Google Scholar 

  74. Deutsch EW et al (2010) A guided tour of the trans-proteomic pipeline. Proteomics 10(6):1150–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carvalho PC et al (2009) YADA: a tool for taking the most out of high-resolution spectra. Bioinformatics 25(20):2734–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu X et al (2010) Deconvolution and database search of complex tandem mass spectra of intact proteins: a combinatorial approach. Mol Cell Proteomics 9(12):2772–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sheng Q et al (2015) Preprocessing significantly improves the peptide/protein identification sensitivity of high-resolution isobarically labeled tandem mass spectrometry data. Mol Cell Proteomics 14(2):405–417

    Article  CAS  PubMed  Google Scholar 

  78. Lundgren DH et al (2009) Protein identification using Sorcerer 2 and SEQUEST. Curr Protoc bioinformatics Chapter 13:Unit 13.3

    Google Scholar 

  79. Park CY et al (2008) Rapid and accurate peptide identification from tandem mass spectra. J Proteome Res 7(7):3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Diament BJ, Noble WS (2011) Faster SEQUEST searching for peptide identification from tandem mass spectra. J Proteome Res 10(9):3871–3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu T et al (2015) ProLuCID: an improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J Proteome 129:16–24

    Article  CAS  Google Scholar 

  82. Faherty BK, Gerber SA (2010) MacroSEQUEST: efficient candidate-centric searching and high-resolution correlation analysis for large-scale proteomics data sets. Anal Chem 82(16):6821–6829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Milloy JA, Faherty BK, Gerber SA (2012) Tempest: GPU-CPU computing for high-throughput database spectral matching. J Proteome Res 11(7):3581–3591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13(1):22–24

    Article  CAS  PubMed  Google Scholar 

  85. Olsen JV, Mann M (2004) Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc Natl Acad Sci U S A 101(37):13417–13422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Griss J (2016) Spectral library searching in proteomics. Proteomics 16(5):729–740

    Article  CAS  PubMed  Google Scholar 

  87. Jaffe JD, Berg HC, Church GM (2004) Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics 4(1):59–77

    Article  CAS  PubMed  Google Scholar 

  88. Garin-Muga A, Corrales FJ, Segura V (2016) Proteogenomic analysis of single amino acid polymorphisms in cancer research. Adv Exp Med Biol 926:93–113

    Article  CAS  PubMed  Google Scholar 

  89. Aggarwal S, Yadav AK (2016) False discovery rate estimation in proteomics. Methods Mol Biol 1362:119–128

    Article  CAS  PubMed  Google Scholar 

  90. Baker PR, Clauser KR. Protein Prospector. http://prospector.ucsf.edu/prospector/mshome.htm

  91. Everett LJ, Bierl C, Master SR (2010) Unbiased statistical analysis for multi-stage proteomic search strategies. J Proteome Res 9(2):700–707

    Article  CAS  PubMed  Google Scholar 

  92. Matrix Science Ltd. (2010) Mind your P’s and Q’s: Maximising sensitivity with percolator. In: Matrix science ASMS workshop and user meeting Salt Lake City, May 23, 2010

    Google Scholar 

  93. Käll L et al (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4(11):923–925

    Article  PubMed  Google Scholar 

  94. Perez-Riverol Y et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1):D442–D450

    Article  CAS  PubMed  Google Scholar 

  95. Tabb DL, Fernando CG, Chambers MC (2007) MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J Proteome Res 6(2):654–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dasari S et al (2012) Pepitome: evaluating improved spectral library search for identification complementarity and quality assessment. J Proteome Res 11(3):1686–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ma ZQ et al (2009) IDPicker 2.0: improved protein assembly with high discrimination peptide identification filtering. J Proteome Res 8(8):3872–3881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989

    Article  CAS  PubMed  Google Scholar 

  99. Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data proteomics and 2-DE. Electrophoresis 20:3551–3567

    Article  PubMed  Google Scholar 

  100. Shortreed MR et al (2015) Global identification of protein post-translational modifications in a single-pass database search. J Proteome Res 14(11):4714–4720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Coleman M (2009) Greylag: software for tandem mass spectrum peptide identification

    Google Scholar 

  102. Risk BA, Spitzer WJ, Giddings MC (2013) Peppy: proteogenomic search software. J Proteome Res 12(6):3019–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jeong K, Kim S, Pevzner PA (2013) UniNovo: a universal tool for de novo peptide sequencing. Bioinformatics 29(16):1953–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tabb DL, Saraf A, Yates JR (2003) GutenTag: high-throughput sequence tagging via an empirically derived fragmentation model. Anal Chem 75(23):6415–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang X et al (2014) JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy. Mol Cell Proteomics 13(12):3663–3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Craig R et al (2006) Using annotated peptide mass spectrum libraries for protein identification. J Proteome Res 5(8):1843–1849

    Article  CAS  PubMed  Google Scholar 

  107. NIST (2019) MS PepSearch

    Google Scholar 

  108. Frewen BE et al (2006) Analysis of peptide MS/MS spectra from large-scale proteomics experiments using spectrum libraries. Anal Chem 78(16):5678–5684

    Article  CAS  PubMed  Google Scholar 

  109. Pino LK et al (2020) The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev 39(3):229–244

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

T.B.’s research activity is supported by grants from the Italian Association for Cancer Research (grant# IG-2018-21834) and by EPIC-XS, project number 823839, funded by the Horizon 2020 program of the European Union; F.M. is sponsored by a postdoctoral fellowship from FIEO-CCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Bonaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yadav, A., Marini, F., Cuomo, A., Bonaldi, T. (2021). Software Options for the Analysis of MS-Proteomic Data. In: Cecconi, D. (eds) Proteomics Data Analysis. Methods in Molecular Biology, vol 2361. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1641-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1641-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1640-6

  • Online ISBN: 978-1-0716-1641-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics