Skip to main content

Diet, Microbiome, and Epigenetics in the Era of Precision Medicine

  • Protocol
  • First Online:
Cancer Epigenetics for Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1856))

Abstract

Precision medicine is a revolutionary approach to disease prevention and treatment that takes into account individual differences in lifestyle, environment, and biology. The US National Institutes of Health has recently launched The All of Us Research Program (2016) to extend precision medicine to all diseases by building a national research cohort of one million or more US participants. This review is limited to how the human microbiome factors into precision medicine from the applied aspect of preventing and managing cancer. The Precision Medicine Initiative was established in an effort to address particular characteristics of each person with the aim to increase the effectiveness of medical interventions in terms of prevention and treatment of multiple diseases including cancer. Many factors contribute to the response to an intervention. The microbiome and microbially produced metabolites are capable of epigenetic modulation of gene activity, and can influence the response through these mechanisms. The fact that diet has an impact on microbiome implies that it will also affect the epigenetic mechanisms involving microbiota. In this chapter, we review some major epigenetic mechanisms, notably DNA methylation, chromatin remodeling and histone modification, and noncoding RNA, implicated in cancer prevention and treatment. Several examples of how microbially produced metabolites from food influence cancer risk and treatment response through epigenetic mechanisms will be discussed. Some challenges include the limited understanding of how diet shapes the microbiome and how to best evaluate those changes since both, diet and the microbiota, exhibit daily and seasonal variations. Ongoing research seeks to understand the relationship between the human microbiome and multiple diseases including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The White House (2015) President Obama’s Precision Medicine Initiative. https://obamawhitehouse.archives.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative

  2. Hullar MA, Fu BC (2014) Diet, the gut microbiome, and epigenetics. Cancer J 20(3):170–175

    Google Scholar 

  3. David LA, Maurice CF, Carmody RN, Gootenberg DB, JE B, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563

    Google Scholar 

  4. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230

    Google Scholar 

  5. Paul B, Barnes S, Demark-Wahnefried W, Morrow C, Salvador C, Skibola C, Tollefsbol TO (2015) Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics 7:112. https://doi.org/10.1186/s13148-015-0144-7

    Google Scholar 

  6. Rajagopala SV, Vashee S, Oldfield LM, Suzuki Y, Venter JC, Telenti A, Nelson KE (2017) The human microbiome and cancer. Cancer Prev Res 10(4):226–234

    Google Scholar 

  7. Linus Pauling Institute (2017) Micronutrient information: folate. http://lpi.oregonstate.edu/mic/vitamins/folate

  8. Bueno O, Molloy AM, Fernandez-Ballart JD, García-Minguillán CJ, Ceruelo S, Ríos L, Ueland PM, Meyer K, Murphy MM (2016) Common polymorphisms that affect folate transport or metabolism modify the effect of the MTHFR 677C> T polymorphism on folate status. J Nutr 146(1):1–8

    Google Scholar 

  9. Rossi M, Amaretti A, Raimondi S (2011) Folate production by probiotic bacteria. Nutrients 3(1):118–134

    Google Scholar 

  10. Pompei A, Cordisco L, Amaretti A, Zanoni S, Raimondi S, Matteuzzi D, Rossi M (2007) Administration of folate-producing bifidobacteria enhances folate status in Wistar rats. J Nutr 137(12):2742–2746

    Google Scholar 

  11. Strozzi GP, Mogna L (2008) Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J Clin Gastroenterol 42(S3):S179–S184

    Google Scholar 

  12. Thomas CM, Saulnier DMA, Spinler JK, Hemarajata P, Gao C, Jones SE, Grimm S, Balderas MA, Burstein MD, Morra C, Roeth D, Kalkum M, Versalovic J (2016) FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lactobacillus reuteri. Microbiology 5(5):802–818

    Google Scholar 

  13. Matherly LH, Hou Z, Deng Y (2007) Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev 26:111–128

    Google Scholar 

  14. Zhao R, Matherly LH, Goldman ID (2009) Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med 11:e4. https://doi.org/10.1017/S1462399409000969

    Google Scholar 

  15. Hurst NR, Kendig DM, Murthy KS, Grider JR (2014) The short chain fatty acids, butyrate and propionate have differential effects on the motility of the Guinea pig colon. Neurogastroenterol Motil 26(11):1586–1596

    Google Scholar 

  16. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28(10):1221–1227

    Google Scholar 

  17. Canani RB, Costanzo M, Leone L (2012) The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics 4(1):4. https://doi.org/10.1186/1868-7083-4-4

    Google Scholar 

  18. Liu D, Andrade SP, Castro PR, Treacy J, Ashworth J, Slevin M (2016) Low concentration of sodium butyrate from ultrabraid + NaBu suture, promotes angiogenesis and tissue remodelling in tendon-bones injury. Sci Rep 6:346–349

    Google Scholar 

  19. Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M (2017) Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J 11:841–852

    Google Scholar 

  20. Miquel S, Martín R, Bridonneau C, Robert V, Sokol H, Bermúdez-Humarán LG, Thomas M, Langella P (2014) Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii. Gut Microbes 5(2):146–151

    Google Scholar 

  21. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L (2016) Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol 7:979. https://doi.org/10.3389/fmicb.2016.00979

    Google Scholar 

  22. Wu N, Yang X, Zhang R, , Li J, Xiao X, Hu Y, Chen Y, Yang F, Lu N, Wang Z, Luan C, Liu Y, Wang B, Xiang C, Wang Y, Zhao F, Gao GF, Wang S, Li L, Zhang H, Zhu B (2013) Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol 66(2):462–470

    Google Scholar 

  23. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70(1):81–120

    Google Scholar 

  24. Licciardi PV, Ververis K, Karagiannis TC (2011) Histone deacetylase inhibition and dietary short-chain fatty acids. ISRN Allergy 2011:869647. https://doi.org/10.5402/2011/869647

    Google Scholar 

  25. Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D et al (2008) Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem 19(9):587–593

    Google Scholar 

  26. Tang Y, Wang J, Lian Y, Fan C, Zhang P, Wu Y, Li X, Xiong F, Li X, Li G, Xiong W, Zeng Z (2017) Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer. Mol Cancer 16(1):42. https://doi.org/10.1186/s12943-017-0612-0

    Google Scholar 

  27. Reisman D, Glaros S, Thompson EA (2009) The SWI/SNF complex and cancer. Oncogene 28:1653–1668

    Google Scholar 

  28. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159

    Google Scholar 

  29. Myzak MC, Dashwood WM, Orner GA et al (2006) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J 20(3):506–508

    Google Scholar 

  30. American Cancer Society (2017) Key statistics for colorectal cancer. https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html

  31. American Institute for Cancer Research (2017) Learn about colorectal cancer. http://www.aicr.org/learn-more-about-cancer/colorectal-cancer/

  32. Ohigashi S, Sudo K, Kobayashi D, Takahashi O, Takahashi T, Asahara T, Nomoto K, Onodera H (2013) Changes of the intestinal microbiota, short chain fatty acids, and fecal pH in patients with colorectal cancer. Dig Dis Sci 58(6):1717–1726

    Google Scholar 

  33. Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E, Norat T (2011) Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ 343:d6617. https://doi.org/10.1136/bmj.d6617

    Google Scholar 

  34. Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP (2013) Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One 8(8):e70803. https://doi.org/10.1371/journal.pone.0070803

    Google Scholar 

  35. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE (2012) A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 10:575–582

    Google Scholar 

  36. Brabban AD, Edwards C (1994) Isolation of glucosinolate degrading microorganisms and their potential for reducing the glucosinolate content of rapemeal. FEMS Microbiol Lett 119:83–88

    Google Scholar 

  37. Elfoul L, Rabot S, Khelifa N, Quinsac A, Duguay A, Rimbault A (2001) Formation of allyl isothiocyanate from sinigrin in the digestive tract of rats monoassociated with a human colonic strain of Bacteroides thetaiotaomicron. FEMS Microbiol Lett 197:99–103

    Google Scholar 

  38. Holst B, Williamson G (2003) A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep 21(3):425–447

    Google Scholar 

  39. Kundu S, Kumar S, Bajaj A (2015) Cross-talk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications. IUMBM Life 67(7):514–523

    Google Scholar 

  40. Khare T, Khare S (2014) Controversies in chemoprevention of colorectal cancer with ursodeoxycholic. Acid JSM Gastroenterol Hepatol 2(1):1009

    Google Scholar 

  41. Dziedzic K, Szwengie A, Górecka D, Gujska E, Kaczkowska J, Drożdżyńska A, Walkowiak J (2016) Effect of wheat dietary fiber particle size during digestion in vitro on bile acid, faecal bacteria and short-chain fatty acid content. Plant Foods Hum Nutr 71:151–157

    Google Scholar 

  42. Woodworth HL, McCaskey SJ, Duriancik DM, Clinthorne JF, Langohr IM, Gardner EM, Fenton JI (2010) Dietary fish oil alters T lymphocyte cell populations and exacerbates disease in a mouse model of inflammatory colitis. Cancer Res 70(20):7960–7969

    Google Scholar 

  43. Hodge AM, Williamson EJ, Bassett JK, MacInnis RJ, Giles GG, English DR (2015) Dietary and biomarker estimates of fatty acids and risk of colorectal cancer. Int J Cancer 137(5):1224–1223

    Google Scholar 

  44. Young TK, Kelly JJ, Friborg J, Soininen L, Wong KO (2016) Cancer among circumpolar populations: an emerging public health concern. Int J Circumpolar Health 75(1):29787

    Google Scholar 

  45. O’Brien DK, Upton L (2008) Cancer incidence and mortality in Alaska, 1996–2004. Alaska Department of Health and Social Services, Section of Chronic Disease and Health Promotion, Alaska Cancer Registry. Depdhss, Anchorage (AK alaska.gov/dph/Chronic/Documents/Cancer/assets/cancerRegistry1996-2004.pdf

    Google Scholar 

  46. Hofmanová J, Vaculová A, Lojek A, Kozubík A (2005) Interaction of polyunsaturated fatty acids and sodium butyrate during apoptosis in HT-29 human colon adenocarcinoma cells. Eur J Nutr 44:40–51

    Google Scholar 

  47. Kolar SSN, Barhoumi R, Callaway ES, Barhoumi R, Callaway ES, Fan Y-Y, Wang N, Lupton JR, Chapkin RS (2007) Synergy between docosahexaenoic acid and butyrate elicits p53-independent apoptosis via mitochondrial Ca2+ accumulation in colonocytes. Am J Physiol Gastrointest Liver Physiol 293:G935–G943

    Google Scholar 

  48. O'Keefe SJ (2016) Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol 13(12):691–706

    Google Scholar 

  49. Turner ND, Lloyd SK (2017) Association between red meat consumption and colon cancer: a systematic review of experimental results. Exp Biol Med 242(8):813–839

    Google Scholar 

  50. Sun J, Kato I (2016) Gut microbiota, inflammation and colorectal cancer. Genes Dis 3(2):130–113

    Google Scholar 

  51. Corredoira-Sánchez J, García-Garrote F, Rabuñal R, López-Roses L, García-País MJ, Castro E, González-Soler R, Coira A, Pita J, López-Álvarez MJ, Alonso MP, Varela J (2012) Association between bacteremia due to streptococcus gallolyticus subsp. Gallolyticus (streptococcus bovis I) and colorectal neoplasia: a case control study. Clin Infect Dis 55(4):491–494

    Google Scholar 

  52. Sharara AI, Hamdan AT, Malli A, El-Halabi MM, Hashash JG, Ghaith OA, Kanj SS (2013) Association of Streptococcus bovis endocarditis and advanced colorectal neoplasia: a case-control study. J Dig Dis 14(7):382–387

    Google Scholar 

  53. zur Hausen H (2006) Streptococcus bovis: causal or incidental involvement in cancer of the colon? Int J Cancer 119(9):xi–xii. https://doi.org/10.1002/ijc.22314

    Google Scholar 

  54. National Cancer Institute (2017) Cancer stats facts: female breast cancer. https://seer.cancer.gov/statfacts/html/breast.html

  55. National Cancer Institute (2017) Cancer stats facts: prostate cancer. https://seer.cancer.gov/statfacts/html/prost.html

  56. Shimizu K, Muranaka Y, Fujimura R, Ishida H, Tazume S, Shimamura T (1998) Normalization of reproductive function in germfree mice following bacterial contamination. Exp Anim 47(3):151–158

    Google Scholar 

  57. Fuhrman BJ, Feigelson HS, Flores R, Gail MH, Xu X, Ravel J, Goeder JJ (2014) Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J Clin Endocrinol Metab 99(12):4632–4640

    Google Scholar 

  58. Li F, Hullar MA, Beresford SA, Lampe JW (2011) Variation of glucoraphanin metabolism in vivo and ex vivo by human gut bacteria. Br J Nutr 106(3):408–416

    Google Scholar 

  59. de Figueiredo SM, Binda NS, Nogueira-Machado JA, Vieira-Filho SA, Caligiorne RB (2015) The antioxidant properties of organosulfur compounds (sulforaphane). Recent Pat Endocr Metab Immune Drug Discov 9(1):24–39

    Google Scholar 

  60. Meeran SM, Patel SN, Tollefsbol TO (2010) Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One 5(7):e11457

    Google Scholar 

  61. Vázquez L, Flórez AB, Guadamuro L, Mayo B (2017) Effect of soy isoflavones on growth of representative bacterial species from the human gut. Nutrients 9(7):E727. https://doi.org/10.3390/nu9070727

    Google Scholar 

  62. Rowland IR, Wiseman H, Sanders TA, Adlercreutz H, Bowey EA (2000) Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer 36(1):27–32

    Google Scholar 

  63. Itsumi M, Shiota M, Takeuchi A, Kashiwagi E, Inokuchi J, Tatsugami K, Kajioka S, Uchiumi T, Naito S, Eto M, Yokomizo A (2016) Equol inhibits prostate cancer growth through degradation of androgen receptor by S-phase kinase-associated protein 2. Cancer Sci 107(7):1022–1028

    Google Scholar 

  64. Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I (2001) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21(4):504–516

    Google Scholar 

  65. Zhang W, Hong L, Graham DY (2014) An update on helicobacter pylori as the cause of gastric cancer. Gastrointest Tumors 1(3):155–165

    Google Scholar 

  66. Moss SF (2016) The clinical evidence linking helicobacter pylori to gastric cancer. Cell Mol Gastroenterol Hepatol 3(2):183–191

    Google Scholar 

  67. Khalsa J, Duffy LC, Riscuta G, Starke-Reed P, Hubbard VS (2017) Omics for understanding the gut-liver-microbiome axis and precision medicine. Clin Pharmacol Drug Dev 6(2):176–185

    Google Scholar 

  68. Kuntz TM, Gilbert JA (2017) Introducing the microbiome into precision medicine. Trends Pharmacol Sci 38(1):81–91

    Google Scholar 

  69. Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P, Dostal A, Boekhorst J, Timmerman HM, Swinkels DW, Tjalsma H, Njenga J, Mwangi A, Kvalsvig J, Lacroix C, Zimmermann MB (2015) Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64(5):731–742

    Google Scholar 

  70. Riscuta G, Dumitrescu RG (2012) Nutrigenomics: implications for breast and colon cancer prevention. Methods Mol Biol 863:343–358

    Google Scholar 

  71. Urbaniak C, Cummins J, Brackstone M, Macklaim JM, Gloor GB, Baban CK, Scott L, O'Hanlon DM, Burton JP, Francis KP, Tangney M, Reid G (2014) Microbiota of human breast tissue. Appl Environ Microbiol 80(10):3007–3014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Riscuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Riscuta, G., Xi, D., Pierre-Victor, D., Starke-Reed, P., Khalsa, J., Duffy, L. (2018). Diet, Microbiome, and Epigenetics in the Era of Precision Medicine. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics for Precision Medicine . Methods in Molecular Biology, vol 1856. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8751-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8751-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8750-4

  • Online ISBN: 978-1-4939-8751-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics